2) fuzzy topology
不分明拓扑
1.
With the results obtained in recent researches in fuzzy topology,this paper presents a new definition of local N compact By the new definition of local N compact those important results or propositions in general topology can be extended to fuzzy topology Theorems 4、8、11、16 display the reasonableness and originality of the new definition of N compact distinctl
本文利用不分明拓扑学最近研究结果 ,重新给出了不分明拓扑空间的局部良紧定义 ,该定义能将一般拓扑学中有关局部紧的重要定理或命题 ,在加一些适当的条件或不加条件推广至不分明拓扑学中 ,特别是本文定理 4、8、11、16等突出地显示了本文定义的合理性以及独特
2.
Properties of compactness of cover style in fuzzy topology and relations with other kinds of fuzzy compactness are established.
给出了不分明拓扑(fts)中覆盖式紧性的主要性质,讨论了其与若干模糊紧性等价刻
3) crisp topological groups
分明拓扑群
1.
The stratiform structure for the product is studied,and the relation is given between the product and direct product of crisp topological groups.
研究了L-Fuzzy拓扑群的直积的层次结构,揭示了它与分明拓扑群的直积之间的联
4) fuzzifying topology
不分明化拓扑
1.
Nearly Compactness and Almost Compactness in Fuzzifying Topology;
不分明化拓扑中近似紧性和几乎紧性
2.
SCompactness in fuzzifying topology;
不分明化拓扑中的S-紧性
3.
Based on the concept of pre-open set,the concept of strong compactness is introduced in fuzzifying topology and some properties are obtained.
在不分明化拓扑空间中,从pre-开集出发引入了强紧性的概念,并且给出了它的一些性质。
5) fuzzifying topological space
不分明拓扑空间
1.
Descriptions of the pre-R_0 separation axiom in fuzzifying topological space;
定义了不分明拓扑空间的拟R0分离公理。
6) fuzzifying topological groups
不分明化拓扑群
1.
: Is this paper,we introduce the concepts of compactness in fuzzifying topological groups,anddiscuss some properties of the notion.
该文讨论了不分明化拓扑群的紧性,给出了不分明化拓扑群的紧性与其子群及商群的紧性之间的若干关系。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条