1) Pythagorean inverse theorem in wider sense
广义勾股逆定理
3) pythagorean theorem
勾股定理
1.
Space pythagorean theorem and space pythagorean number;
空间勾股定理及空间勾股数
2.
The enlightenment of the evolvement of Pythagorean theorem to the modern mathematics teaching;
勾股定理的演变对现代数学教学的启示
4) right angles theorem
勾股定理
1.
Let (E,S,Ω,f)be a random inner product space, the scharwz inequality, Riesz theorem, right angles theorem and some other results in (E,S,Ω,f) are proved.
设(E,S,Ω,f)是随机内积空间,证明了Scharwz不等式、Riesz表示定理及勾股定理等若干结论。
2.
From view of multi-culture, the right angles theorem was all inheritance of common mankind, it was for the tree indivisibility of world mathematics and international community all very pay attention to its value of social culture, almost whole world high school mathematics course was all introductive contents.
从多元文化的视角看,勾股定理是全人类共同的遗产,是根深叶茂的世界数学之树不可分割的一枝,世界各国都非常重视勾股定理的社会文化价值,几乎全世界中学数学课程中都介绍勾股定理。
5) Gou Gu theorem
勾股定理
1.
In this paper, Gou Gu theorem and Cosine theorem are developed.
推广了“勾股定理”及“余弦定理”,即 :如果直角三角形各边上的简单图形曲线相似 ,则其曲线弧长将仍能满足“勾股定理”,同时对于任意三角形“余弦定理”也成立 。
2.
Gou Gu Theorem (the Right Triangle Theorem), known as Pythagorean Proposition in the West, is believed to have been discovered by the ancient Greek mathematician Pythagoras (ca.
勾股定理在西方被称为"毕达哥拉斯定理"。
6) Pythagoras theorem
勾股定理
1.
Generalized pythagoras theorem and inequatily of pythagoras type;
广义勾股定理和勾股型不等式
补充资料:函数逼近,正定理和逆定理
函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems
函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条