1) Pythagorean Numbers theorem
勾股数定理
2) pythagorean theorem
勾股定理
1.
Space pythagorean theorem and space pythagorean number;
空间勾股定理及空间勾股数
2.
The enlightenment of the evolvement of Pythagorean theorem to the modern mathematics teaching;
勾股定理的演变对现代数学教学的启示
3) right angles theorem
勾股定理
1.
Let (E,S,Ω,f)be a random inner product space, the scharwz inequality, Riesz theorem, right angles theorem and some other results in (E,S,Ω,f) are proved.
设(E,S,Ω,f)是随机内积空间,证明了Scharwz不等式、Riesz表示定理及勾股定理等若干结论。
2.
From view of multi-culture, the right angles theorem was all inheritance of common mankind, it was for the tree indivisibility of world mathematics and international community all very pay attention to its value of social culture, almost whole world high school mathematics course was all introductive contents.
从多元文化的视角看,勾股定理是全人类共同的遗产,是根深叶茂的世界数学之树不可分割的一枝,世界各国都非常重视勾股定理的社会文化价值,几乎全世界中学数学课程中都介绍勾股定理。
4) Gou Gu theorem
勾股定理
1.
In this paper, Gou Gu theorem and Cosine theorem are developed.
推广了“勾股定理”及“余弦定理”,即 :如果直角三角形各边上的简单图形曲线相似 ,则其曲线弧长将仍能满足“勾股定理”,同时对于任意三角形“余弦定理”也成立 。
2.
Gou Gu Theorem (the Right Triangle Theorem), known as Pythagorean Proposition in the West, is believed to have been discovered by the ancient Greek mathematician Pythagoras (ca.
勾股定理在西方被称为"毕达哥拉斯定理"。
5) Pythagoras theorem
勾股定理
1.
Generalized pythagoras theorem and inequatily of pythagoras type;
广义勾股定理和勾股型不等式
补充资料:勾股数
能分别是某个直角三角形三边之长的三个整数,称为“勾股数”。不定方程x2+y2=z2的每一组正整数解都是勾股数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条