1) Total asymptotically quasi-nonexpansive mappings
全渐近拟非扩张映射
2) asymptotically nonexpansive mappings
渐近非扩张映射
1.
Weak convergence theorem of asymptotically nonexpansive mappings in Banach space;
Banach空间中渐近非扩张映射的弱收敛定理
2.
In particular, fixed point problems of asymptotically nonexpansive mappings in product space are discussed, the convergence problems of the new interative sequence for nonexpansive mappings under specific conditions are discussed in this thesis.
特别讨论了积空间中渐近非扩张映射的不动点问题,研究了某些非扩张映射迭代序列在特定条件下的收敛性问题。
3) asymptotically nonexpansive mapping
渐近非扩张映射
1.
Convergence theorems for asymptotically nonexpansive mappings in Banach space;
Banach空间中渐近非扩张映射的收敛定理
2.
First give the definition of a new mapping—(L-α) uniformly lipschitz asymptotically nonexpansive mapping on a uniforn convex Banach space,then construct three-step iterative sequences of(L-α) uniformly lipschitz asymptotically nonexpansive mapping in this subset.
首先定义一致凸Banach空间某非空紧子集上的一种新的映射—(L-α)一致李普希兹渐近非扩张映射,在该子集上构造关于(L-α)一致李普希兹渐近非扩张映射的三步迭代序列,然后来讨论三步迭代序列的收敛性。
3.
A convergence of Ishikawa iteration sequence with errors is investigated in this paper for asymptotically nonexpansive mapping in uniformly convex Banach spaces.
在一致凸 Banach(巴拿赫 )空间中研究了渐近非扩张映射的带误差的Ishikawa迭代序列的收敛性。
4) non-self asymptotically quasi-nonexpansive-type mapping
渐近拟非扩张型非自映射
1.
This paper aims to introduce the concept of non-self asymptotically quasi-nonexpansive-type mappings and to study the iterative sequence(1.
介绍了渐近拟非扩张型非自映射的概念,在Banach空间研究了迭代序列(1。
5) non-self asymptotically nonexpansive mapping
渐近非扩张非自映射
6) asymptotically quasi-nonexpansive mappings
渐近拟非扩张映象
1.
In banach space,we have proved a sufficient and necessary condition for three steps iterative(processes with errors for asymptotically quasi-nonexpansive mappings to converge to coupled fixed point.
在Banach空间中,证明渐近拟非扩张映象带误差的三步迭代列收敛于耦合不动点的充要条件。
2.
Some necessary and sufficient conditions that Ishikawa iterative sequence convergent to the fixed points for asymptotically quasi-nonexpansive mappings in the convex metric space are given.
给出了凸度量空间中渐近拟非扩张映象的Ishikawa型迭代序列收敛于不动点的充要条件,所得结果推广、改进和包含了刘启厚[1]等人的最新成果。
3.
This paper studies the iterative approximation problem of fixed point for a family of finite asymptotically quasi-nonexpansive mappings and quasi-uniform L-lipschitz operators and gives the sufficient and necessary condition for the Ishikawa iterative sequence with errors strongly convergent to common fixed point.
研究了Banach空间中有限个渐近拟非扩张映象及拟一致L-lipschitz算子不动点的迭代逼近问题,并给出带误差的Ishikawa型迭代序列强收敛于其公共不动点的充要条件。
补充资料:扩张映射
扩张映射
expanding mapping
【补注]Y系统在西方文献中通常称为AHocoB系统(A阳sovs岁ton).扩张映射【e%卿喇吨n.跳那嗯;paeT,roaa啊ee oTo6Pa-袱eH“e」 一个由闭流形M到它自身上的可微映射f,在其作用下所有切向量的长度(在某种,因而在任何R记-n必n刀度量的意义下)依指数速率增长,即存在常数C>0与义>1,使对一切X任TM与一切n>0, {ITI,(X){I)C又nt}X!1.此概念也有不带可微性条件的变形,它能概括许多以前研究过的一维情形的例子作为特例.扩张映射的性质类似于y系统(Y一s那tem)的性质,并且部分性质甚至还简单些(例如,C,类的扩张映射恒有作为正密度用局部坐标定义的有限不变测度).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条