1) orthogonal triangular decomposition
正交三角分解
2) orthogonal diagonal factorization
正交对角分解
1.
Full rank factorization and orthogonal diagonal factorization of row (column) symmetric matrix;
行(列)对称矩阵的满秩分解和正交对角分解
3) triangular factorization
三角分解
1.
Then,a new fast algorithm of the minimal norm least squares solution for linear system whose coefficients is an m×n symmetric Loewner matrix with full column rank is given by forming a special block matrix and researching the triangular factorization of its inverse.
对于工程计算中常常遇到的一类线性方程组的求解,通过构造特殊分块矩阵并研究其逆矩阵的三角分解,给出了求秩为n的m×n阶对称Loewner矩阵为系数阵的线性方程组,及极小范数最小二乘解的快速算法,该算法的计算复杂度为O(mn)+O(n2),而一般方法的计算复杂度为O(mn2)+O(n3)。
2.
In order to decrease the computation amount and reduce the triangular factorization error of Hankel matrix and its inverse,a new fast algorithm is presented in terms of the symmetrical structure of Hankel matrix.
为了降低Hankel矩阵及其逆矩阵三角分解算法的计算量和减小这类算法的误差。
3.
A fast algorithm for determining the triangular factorization of a symmetric r-circulant matrix and inverse matrix using O(n~2) operations is presented.
根据r-对称循环矩阵的特殊结构给出了求这类矩阵本身及其逆矩阵三角分解的快速算法,算法的运算量均为O(n2),一般矩阵及逆矩阵三角分解的运算量均为O(n3)。
4) triangular decomposition
三角分解
1.
In order to study a new algorithm for fast triangular decomposition of Toeplitz matrix,using the displacement structure of the special matrix,the necessary and sufficient condition for a matrix decomposing into the product of the lower and upper triangular Toedplitz matrix is given.
为了研究Toeplitz型矩阵一种新的快速三角分解算法,利用特殊矩阵的位移结构,给出了矩阵可分解为下上三角Toeplitz矩阵乘积的充要条件。
2.
For the m×n Cauchy matrix C with full column rank,the explicit expression and the fast algorithm of the minimal norm least square solution to the linear system Cx=b were indirectly obtained by construction of a special block matrix and study of the triangular decomposition of its inverse.
对于秩为n的m×n阶Cauchy矩阵C,通过构造特殊分块矩阵并研究其逆矩阵的三角分解,进而间接地得到了线性方程组Cx=b的极小范数最小二乘解的显式表达式及其快速算法,所需运算量为O(mn)+O(n2),而通常构造法方程组的方法所需运算量为O(mn2)+O(n3),用正交化法虽然避免了构造法方程组,但所需的运算量更大些。
3.
Method of solving inverse matrix by position displacement, which adopts the triangular decomposition principle can help to solve large inverse matrix with computers.
此方法采用矩阵三角分解原理 ,将矩阵表达为分解上、下三角阵的乘积 ,利用上、下三角阵的求逆结果求得原矩阵的逆阵 。
5) orthogonal decomposition
正交分解
1.
A method called orthogonal complement faces(OC-faces) was presented based on the orthogonal decomposition theorem to free face recognition from feature extraction.
该方法基于空间正交分解理论,对不同类的原始训练样本进行Gram-Schmidt正交化,以正交化后的基张成各个不同的子空间,将测试样本分解为子空间投影及子空间正交补两部分。
2.
The signals of amplitude and phase which are senstive to materials of iron and stainless steel are created using the theory of X-R orthogonal decomposition.
运用X-R正交分解原理,最终处理分离出对铁和不锈钢成分灵敏的振幅和相位信号。
6) proper orthogonal decomposition
正交分解
1.
An Application of Proper Orthogonal Decomposition to of the Stability Analysis of Thermal Convection System;
正交分解法在热对流系统稳定性分析中的应用研究
2.
A series of known approximate flow field solutions are reassembled into basic modes based on the proper orthogonal decomposition(POD).
由一系列已知的相近流场解重新组合成一组正交分解(POD)的基模态。
3.
The method of proper orthogonal decomposition was used in the investigation of wall-pressure fluctuation.
介绍了正交分解法在脉动壁压研究中的应用。
补充资料:正交分解
高中物理力学的一种求解方法,一般是在刚上高一是会学到
将一个力沿着互相垂直的方向(x轴、y轴)进行分解的方法
从力的矢量性来看,是力f的分矢量;从力的计算来看,的方向可以用正负号来表示,分量为正值表示分矢量的方向跟规定的正方向相同,分量为负值表示分矢量的方向跟规定的正方向相反.这样,就可以把力的矢量运算转变成代数运算.所以,力的正交分解法是处理力的合成分解问题的最重要的方法,是一种解析法.特别是多力作用于同一物体时,计算起来,非常方便.
利用正交分解法求合力可分以下四步:
(1)以力的作用点为原点,建立合适的直角坐标系;
(2)将各力进行正交分解;
(3)分别求出两个坐标轴上各分量的代数和
(4)正交合成,求出合力的大小和方向.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条