说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> p-绝对连续函数
1)  p-absolutely continuous functions
p-绝对连续函数
2)  p-strong absolutely continuous functions
p-强绝对连续函数
3)  p-weak absolutely continuous functions
p-弱绝对连续函数
4)  p-2 order strong absolutely continuous functions
p-二级强绝对连续函数
5)  absolute continuous function
绝对连续函数
1.
The fundamental purpose of this paper is to point out main features and several sufficient conditions of continuous function becoming absolute continuous function, introduce and apply an important theorem.
所述内容对深刻理解绝对连续函数类具有重要意义。
2.
The authors discuss the problem whether the condition in the definition of a reproducing kernel space can be weakened or not and obtaine two conclusions as follows:(1) The conditions, u(x) being a real continuous function in interval [a,b] and u′(x)∈L~2[a,b], can not deduce the conclusion that u(x) is an absolute continuous function in interval [a,b].
讨论再生核空间W12 [a,b]定义中的条件是否可以减弱的问题,得到下面的两个结论:(1)条件u(x)是[a,b]上实的连续函数且u′(x)∈L2 [a,b]不能推出u(x)是[a,b]上实的绝对连续函数; (2)再生核空间W12 [a,b]定义中的条件改为u(x)在[a,b]是连续函数或连续囿变函数,那么函数空间不再是再生核空间。
3.
The paper gives the definitions of monotonic function,bounded variation function and absolute continuous function,and discusses the relationship of the three.
文章给出了单调函数、有界变差函数、绝对连续函数的定义并讨论了三者之间的关系。
6)  Absolutely continuous functions
绝对连续函数
1.
By using Bojanic-Cheng s method and analysis techniques,the author studies the approximation properties of Bernstein-Kantorovich-Bézier Operator for some Absolutely continuous functions in the case of 0<α≤1 and α≥1 respectively.
利用经典的Bojanic-Cheng方法,结合分析技术,分别讨论了Bernstein-Kantorovich-Bézier算子在0<α≤1及α≥1时,对一类绝对连续函数的逼近。
2.
The purpose of this paper is to investigate the rate of convergence of Bernstein-Bézier Operator for some absolutely continuous functions.
为了进一步了解它的理论及其逼近性质,研究了它对一类绝对连续函数的逼近。
3.
Using Bojanic-Cheng\'s method and analysis techniques,the authors study the approximation properties of BS-Bézier Operators for some absolutely continuous functions.
利用经典的Bojanic-Cheng方法,结合分析技术,研究了BS-Bézier算子对一类绝对连续函数的逼近性质,得到比较精确的收敛阶估计。
补充资料:半连续函数


半连续函数
semi-continuous function

  半连续函数l肥l企伽血以朋仙盆七叨;noJlyllenpep曰-阳a:中押刘”,」 定义在完全度量空间X上的扩充实值函数f,称为在点为沂x是下(上)半连续的(lo忱r(印per)s咖一cont~us),如果 粤j(‘))f(动〔瓦f(‘)‘f(“。)]函数.厂称为在X上是下(上)半连续的,如果它在X的每个点都是下(上)半连续的.单调增加(减少)的函数列,其中每个函数都在点x。是下(上)半连续的,那么它们的极限函数在x。仍是下(上)半连续的.若“和v分别为X上的下半连续和上半连续函数,且对所有的xeX,。(x)簇u(x),。(劝>一二,以劝<+田,那么存在X上连续函数f,使得对一切x任x,满足条件。(幻蕊f(x)镬“(x).设拼是R“上的非负正则Bo闭测度,则对任何召可测函数.f:R”一R,存在两个单调函数序列道。。}和{叭小满足如下条件:l)u。和。。分别是下半连续和上半连续的;2)每个u。是有下界的,而每个。。是有上界的;3){u。}是减少的序列而道。,}是增加序列;4)对一切x, “。(x)).f(义))v。(x);5) 。峡u。(‘)一。叭v。(‘)=f(x)拜几乎处处成立;6)若f在EC=R”上为拼可和,且.f‘L:(E,料),则u。,v。‘L,(E,拜)且 厄J二“。一厩J·。“;!一丁.厂‘。 石EE(Vitali.(、份t反油如ry定理(vilali一e汕川话习创了t恤”-化m)).【补注】下半连续与上半连续常缩写为!.s.c.与u.s.c二l,s.c与u.s.c.函数的概念也可以在拓扑空间X上定义.任何一个连续函数族的上(相应地,下)包络是1 .s.c.(u.s.c)的,且当X为完全正则时,其逆亦真;若X可度量化,上述结果对连续函数的可数族也成立.所以,度量空间X上的半连续函数必属于第一助i此类(Ba此ck比es).其逆不真. 设X=R,又设 r一1当二0,于是f属于第一Bai把类,但它既不是上半连续的也不是下半连续的.此外,},厂}是下半连续的,但 纸}f{(x)=l矜O一Ifl(0)·注意】f}(x)二lim。一、。(。x,)/(。x,+l)对一切x任R成立、所以lfl是连续函数的增加序列的逐点极限. 有关半连续函数的一个很有用的事实是D画-G玉川a幻引理(D而一Q由nlen卫刀a).设X为紧空间,(“,),,为一族1.s.c.函数、它具有如下的性质:对于I的任意有限子集J,存在i〔I使得suP,。J巧(“,.若。为u.s.c.函数使得。  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条