说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 环送代数
1)  ring conVerse algebra
环送代数
2)  algebraic loop
代数环
1.
The algebraic loop problem existing in closed loop and feedback simulation circuit is well sdved and good simulation result is achived.
很好地解决了闭环、反馈仿真电路中出现的代数环问题,并取得了很好的仿真效果。
2.
The origin of algebraic loops and the methods to avoid it in the simulations of control systems are discussed in this paper.
针对控制系统仿真中的代数环问题,探讨了代数环的起因以及迄今的对策。
3.
This paper introduces the algebraic loop, its influences to the simulation of a control system, and the methods to avoid it.
本文首先以控制系统中的PI调节器仿真为例,讨论了具有饱和输出特性的调节器模型的设计并引出了饱和环节仿真中出现的代数环问题。
3)  algebraic torus
代数环面
4)  Cyclic algebra
循环代数
5)  ring of algebraic integers
代数整数环
6)  Boolean rings
布尔环(代数)
补充资料:环与代数


环与代数
rings and algebras

环(NOether环),该定理等价于将整数环的任何理想表示成素理想方幂的交.这个理论的基本目的是要将环的任何理想表示成有限个某种特殊形式(准素的,原的,叔的、等等)的理想的交.这里选择“特殊”理想的形式和分解形式,使得在某个有限性条件下,“存在性定理”(即任何理想有分解)和“唯一性定理”(每个理想分解成的简单理想的确定集合与分解无关)成立.这个目的,在N沈ther环中对准素理想的经典N吮ther理论已经实现.这个定理也被推广到非交换情形. 交换代数(con万刀utati记al罗bra)最初是出现在代数数论中的数环.现今,在代数和代数几何的交汇处,交换环的理论得以迅速发展. 赋范的,拓扑的,有序的,以及其他带有附加结构的环与代数经常出现在泛函分析和数学的其他领域中.带有附加结构环的详细的情形见赋范环(nonned ring);拓扑代数(topo10gi以lal罗bra);序环(。rde代d 11ng).【补注】对非交换环R在环A上的作用,双线性条件,(ab)=(:a)b二a(“b)同模条件(:+刀)a二:a+声,和:(乡a)=(:月)a实际上是不相容的,它要求对全部a,b‘A,:,口‘R,有((:刀一口:)a)b二o“b((:口一刀幻a)·因此,当考虑环A上非交换算子环小时,不强求双线性条件(2)成立. 使用下列术语:若条件(l)成立,称A是带算子环小的环;若(l)和(2)成立,则A是小代数;或小上的代数.环与代数〔垃娜耐映灼淄;幼皿以“幼re6pM] 带有两个通常称为加法和乘法的二元运算的集合.这样一个带有加法和乘法的集合称为环(朋g),如果:l)它关于加法是一个Ab日群(Abel运ngro叩)(特别地,环有零元,记为O,每个元素x有一个负元一x);2)乘法对加法左右分配,即对环中所有元素:,y,:,有x(y+:)二x夕+x:和(y+z)x二夕x十公x· 如果环K没有零因子,即对任何非零x,y6K,x夕并0,则环的全部非零元的集合关于乘法是一个广群(groupoid).如果全部非零元的集合关于乘法是一个群(grouP),则环是一个除环(skew一五日d).环K称为结合的(踢戊iati祀),如果乘法满足结合律,即对K中所有x,y,:,有(xy):二x(y习.如果环中的乘法是交换的,即对K中所有x,y,有xy”yx,则环称为交换的(。mmutati*)所谓单位元(记喇jty),指的是环的元素1,对所有义〔K,有 x·1=l·x二x.一般地,环不一定有单位元.每个除环是有单位元的无零因子结合环.有单位元的无零因子交换结合环被称为整环(加把脚1 do~). 设。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条