说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义度量
1)  generalized metric
广义度量
1.
The relation between generalized metric spaces and posets is treated.
广义度量空间和偏序集都具有函数空间。
2.
A generalized metric dist is defined on convex sets.
定义凸集上一种广义度量dist,给出其拓扑性质以及业dist与熵的关系。
2)  Metric generalized inverse
度量广义逆
1.
Perturbation of Moore-Penrose Metric Generalized Inverse of Linear Operators in Banach Space
Banach空间中线性算子Moore-Penrose度量广义逆的扰动
2.
In this paper,we used the concept of metric generalized inverse,gave the characterization and construction of constrained extremal solutions of T(x)=h in the set of extremal solutions of L(x)=y.
运用线性算子的度量广义逆概念,在L(x)=y的极值解集合中,给出T(x)=h的约束极值解的精确刻画。
3.
Without the assumption that Banach space Y is reflexive and T is a densely defined linear operator with closed range from Banach space X to Y, it is proved that the metric generalized inverse of linear operator has closed convex range set-valued mapping by means of geometry of Banach space.
在Banach空间Y无自反和从Banach空间X到Y的线性算子T无闭值域和稠定的假定下,利用Banach空间几何方法证明了Banach空间中线性算子的度量广义逆是具有闭凸值的集值映射,建立了该度量广义逆的存在性、唯一性和等价表达式,并给出了此表达式的一个应用示例。
3)  general Hartley measure
广义Hartley度量
1.
In view of the shortcomings of current approaches to measure uncertain information,we develop general Hartley measure for fuzzy sets on general range through information-filtering parameters and measurements abo.
本文在指出现有的度量不确定信息方法不足的基础上,通过信息过滤参数和水平截集的度量值,对具有测量体系的一般论域上的模糊集,建立了广义Hartley度量,讨论了模糊数的广义Hartley度量的基本性质,同时给出了几类特殊模糊数的广义Hartley度量计算公式。
4)  Generalized metric addition
广义度量加
5)  Generalizal metric spaces
广义-度量空间
6)  generalized gradient vector flow
广义梯度矢量流
1.
The Snake algorithm uses the generalized gradient vector flow(GGVF) as the potential energy function and has a good performance when dealing with gray images.
采用广义梯度矢量流(G enera lized grad ien t vector flow,GGVF)作为势能函数的Snake算法在处理灰度图像分割时具有较好的性能。
补充资料:可公度量和不可公度量


可公度量和不可公度量
ommensulble and incommensuable magnitudes (quantities)

  可公度t和不可公度t【~e璐u由lea目in~men-su.ble magultodes(quanti柱es);“洲口Mel娜M毗“”“”-113Mep目M曰e肠eJ皿,一皿曰』 如果两个同类量(例如两个长度或两个面积)具有或不具有公度(common measure,即另一个同类量,所考虑的两个量都是这个量的整数倍),则相应地称这两个量为可公度量或不可公度量.正方形的边长和对角线,或圆的面积和丫的半径的平方,都是不可公度量的例尹.如果两个量是可公度的,则‘l艺们的比是有理数;相反,不可公度量忿比是无理数、
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条