1) infinitemsimal generator
无穷小母元
2) the infinitesimal generator of operator semigroups
算子半群的无穷小母元
3) infinitesimal generator of a semigroup of bounded linear operators
有界线性算子半群无穷小母元
4) infinitesimal generator
无穷小生成元
1.
Characterization of exponentially bounded C-semigroups by infinitesimal generators;
无穷小生成元对指数有界C-半群的刻划
2.
The characteristics of infinitesimal generator of equicontinuous semigroups of class (C_0);
(C_0)类等度连续半群的无穷小生成元的特征
3.
) parameters contained in their infinitesimal generators.
研究当无穷小生成元含有参数时,其生成的C0半群关于参数的可微性问题。
5) the infinitesimal generator
无穷小生成元
1.
The properties of closable linear operator A on Banach space X were studied in this paper, and some sufficient conditions that the close of can be the infinitesimal generator of a C0- semigroup of contractions were obtained.
文章研究了Banach空间上可闭化线性算子A的分析性质,并给出其闭化算子A成为C0压缩半群无穷小生成元的条件。
6) infinitesimal
[英][,ɪnfɪnɪ'tesɪml] [美]['ɪnfɪnə'tɛsəmḷ]
无限小的,无穷小的,微元;无穷小
补充资料:无穷远元
无穷远元
nfinitely-distant elements gSt infinitely-remote elements
无穷远元l词茄tely一J劝明tda川翻tS或沉阮jtely一比订幻记el已rr屺nts;6ee.oe.oy口a月e二e3月eMe.、],反常元(〕mProper elen祀nis),理想元(记份1 elelr祀nts) 将一仿射空间扩充为紧空间所产生的元素(点,直线,平面等).无穷远元是“实在的”无穷(j汕习j勿)在各种数学理论中所呈现的形式之一.无穷远元只有在一“有限”空间的某一具体紧化的背景下考虑才是有意义的,这一事实显示了有限和无限之间的连续联系.由有限维EucUd空间最常用的紧化方法而得到的几种无穷远元可描述如下: l)如果引人无穷远元(点一的和+田),数轴R完全化为紧的扩充数轴(extended nur吐巴路)厦,它同胚于一(闭)线段.另一种紧化方法是将R嵌人于实射影直线p.(R),后者同胚于圆周S’(见射影空间(projeCtiVe sPace));这时R由一个唯一的无穷远点(加俪tely~distanipoint)的完全化. 2)有限复平面C添加一个唯一的无穷远点的后完全化为紧的扩充复平面(以把川司。mplexp厄淤)刃,它同胚于复射影直线(proj“石Ves加吵tlir‘)或及政旧朋球面52(Eu日id空间R3中的单位球面). 3)n维实数空间R”(n)l)添加一个唯一的无穷远点。后完全化为紧的扩张数空间丽·,它同胚于绿窗兮,此同胚可用球极平面投影(stereograPhicP叼“石。n)直观地说明.另一种紧化方法是将R”嵌人于”维实射影空间尸。(R).如果n>1,则这两种紧化方法不同胚. 例如,在射影平面尸:(R)中平行直线对应于同一个无穷远点,而不同的无穷远点对应于不平行的直线·平面pZ(R)的全体无穷远点构成手李季享筝(in-俪回y一distants加i咖如e).类似地,射影空间尸3(R)中每一平面被一无穷远直线完全化.尸3(R)中所有的无穷远点和无穷远直线构成无穷远平面.一般地,尸。(R)中维数小于或者等于(n一2)的无穷远元构成(n一l)维无穷远超平面(i川Initely一曲扭nth刀茸甲-hne). 4)n维复数空间C”(。)1)的一个紧化可由将C”嵌人到复n维射影空间尸。(C)而得到.同样,尸。(C)中维数小于或者等于(。一2)的无穷远元构成(”一l)维无穷远超平面.另一种紧化方法是将C”扩充到扩充复空间(以把nded comP」ex sPaCe)C”,它是n个订的拓扑积.当。>1时,空间尸。(C)和C”不同胚.C”的无穷远点是其中至少有一个坐标分量z,=的的点:=(21,…,z。).空间c·的所有无穷远点自然地分成陀个集合 M,={z〔亡”:z,二田,z*E刃,k尹v},每个集合M,的维数是n一1.点(的,…,的)属于所有的M,,v=l,…,n.对于C”上的实函数,也可使用一点紧化(见A爬Kc阴几PO.紧化(Alebandrovcompact币Ca石on))C”,它同胚于RZ”以及球面梦”.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条