1) anti invariant minimal submanifold
反不变极小子流形
1.
In this paper, we prove the following Theorem Let M n+1 be a closed anti invariant minimal submanifold tangent to the structure vector field of Sasakian manifold M 2n+1 , then (1) If Ricci curvature of M 2n+1 is greated than -2 and H 1(M n+1 ,R)≠0 , then M n+1 is unstable.
本文给出了Sasakian流形中反不变极小子流形是稳定或不稳定的一个充分条件。
2) anti_invariant submanifold
反不变子流形
1.
It is proved that there doesn′t exist an anti_invariant submanifold above one dimension of a SP_Sasakian manifold.
给出了一P_Sasakian(SP_Sasakian)黎曼流形M(φ,ξ,η,G)的浸入子流形M上的结构(Ψ,V,ν,g)是P_Sasakian(SP_Sasakian)黎曼结构的充要条件;还证明了SP_Sasakian流形不存在高于1维的反不变子流形。
3) invariant(anti-invariant)
不变(反不变)子流形
4) minimal submanifolds
极小子流形
1.
On pinching problem of sectional curvature on minimal submanifolds in a symmetric space;
局部对称黎曼流形中极小子流形的截面曲率的pinching问题
2.
This note deals with the compact minimal submanifolds in a unit sphere, the Laplaciano f the square of the length of the second fundamental form is calculated and estimated.
研究单位球面中紧致极小子流形,计算和估计第二基本形式长度的平方的Laplacian,引进一个矩阵不等式,运用散度定理得到了一个Simons型积分不等式。
3.
In this paper, a pinching theorem on the minimal submanifolds in a locally Symmetric Riemannian manifold is obtained, a known result is improved.
研究局部对称完备黎曼流形中的紧致极小子流形,得到了这类子流形的第二基本形式模长平方的一个拼挤定理,推广了[1]中的结论,改进了已有的结果。
5) minimal submanifold
极小子流形
1.
Compact minimal submanifolds in locally symmetric spaces;
局部对称空间中的紧致极小子流形
2.
On some global pinching theorems for minimal submanifolds of a locally symmetric space。;
关于局部对称空间中极小子流形的n个整体拼挤定理(英文)
3.
On inherent rigidity for minimal submanifolds in a sphere;
关于球面上极小子流形的内蕴刚性
6) invariant submanifold
不变子流形
1.
It is proved that there doesn′t exist an anti_invariant submanifold above one dimension of a SP_Sasakian manifold.
给出了一P_Sasakian(SP_Sasakian)黎曼流形M(φ,ξ,η,G)的浸入子流形M上的结构(Ψ,V,ν,g)是P_Sasakian(SP_Sasakian)黎曼结构的充要条件;还证明了SP_Sasakian流形不存在高于1维的反不变子流形。
2.
The invariant submanifolds of (ε)-Sasakian manifolds are discussed and some properties of them are got.
主要对(ε)-Sasakian流形中的不变子流形、反不变子流形进行讨论,得到了该类子流形的一些几何性质。
3.
A class important manifold-cosymplectic manifold is introduced,and the invariant submanifold of cosymplectic manifold is studied to obtain some interesting properties of the invariant submanifolds.
介绍了一类重要的流形——余辛流形,给出了关于余辛流形曲率的一些关系式,并研究了余辛流形的不变子流形,得到了一些有趣的性质:余辛流形的不变子流形仍然是余辛流形,并且是最小子流形。
补充资料:子流形
见微分流形。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条