1) unilaterally constrained motions
单侧约束运动
1.
In this paper, the unilaterally constrained motions of a large class of rigid bodies systems are studied, both locally and globally.
本文研究了一大类刚体系统的单侧约束运动的局部和整体性质。
2) unilateral constrained
单侧约束
3) kinematic constraint
运动约束
1.
based on an analysis of the effect of the kinematic constraint on system s stochastic observability.
基于运动约束的引入对系统随机可观测性影响的分析,给出滤波器稳定的充分条件和性能改善的一种度量。
2.
A method to solve the compatibility equation of distortion indirectly is put forward based on the kinematic constraint relation.
提出利用运动约束关系来间接求解过约束并联机构变形协调方程。
4) motion constraints
运动约束
1.
A high efficiency phase plane modeling method of robot is presented, which constructs path using B spline, divides phase plane by parameter of B spline, confines modeling region by motion constraints, and provides heuristic information for speeding up searching procedure.
此方法采用 B样条曲线构成路径 ,依据 B样条曲线参数划分相平面 ,利用运动约束限制建模区域 ,为启发式搜索提供启发信息以加快搜索进程 。
2.
The article includes the recognition of sign language ,the integration of sign language ,the communication of sign language on net and the motion constraints of hand .
主要介绍国内外计算机手语研究的主要方向及应用,包括手语的识别,手语的合成,手语的网络通信和手的运动约束。
6) kinematic constraint
运动学约束
1.
Modeling and Application of Kinematic Constraint in Precision Assemblies;
精密装配运动学约束建模及应用
2.
According to the mechanical principles and structural features of the lunar rover,the kinematic constraints of the wheels were given.
根据六圆柱-圆锥轮式月球车的机构原理和结构特点,给出了月球车车轮的运动学约束条件,建立了月球车的运动学约束模型,针对月球车的基本运动要求,推导了月球车六轮协调运动的控制模型,并基于实时Linux和PC104总线计算机的车载计算机运动控制系统,对月球车的运动控制进行了实验研究。
补充资料:单侧曲面与双侧曲面
单侧曲面与双侧曲面
one - sided and two - sided surfaces
单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条