1) approachable solution
可接近周期解
2) asymptotically periodic solution
渐近周期解
1.
We study the periodic solutions and the asymptotically periodic solutions of difference equations with continuous variables, and sufficient conditions for the existence of periodic solutions and asymptotically periodic solutions are obtained.
研究了具连续变量的差分方程的周期解和渐近周期解,并分别获得了周期解和渐近周期解存在性的几个充分条件,我们的结果推广了Agarwal等人的相应结果。
3) the approximate periodic solution
近似周期解
1.
The article mainly discuss the existence and the stability of the approximate periodic solutions for strongly nonlinear quasi-conservative autonomous systems +g(x)=εf(x,).
主要讨论了强非线性拟保守自治系统+g(x)=εf(x,)的近似周期解及其稳定性,并应用以能量函数为基础的摄动法,分析了两个强非线性方程的近似周期解。
4) asymptotically almost periodic solutions
渐近概周期解
1.
In this paper,we discuss the existence of the existence of asymptotically almost periodic solutions of second-order neutral differential equations with piecewise constant argument by asymptotically almost periodic sequence solutions of difference equations.
通过构造差分方程的渐近概周期序列解,研究了二阶中立型逐段常变量微分方程渐近概周期解的存在性。
2.
Particularly,we discuss the necessary and sufficient conditions for the existence and uniqueness of asymptotically almost periodic solutions for the first-order differential equation u′+▽Φ(u)=h(t),where▽Φdenotes the gradi- ent of the convex functionφon R~N.
对于一阶微分系统u′+F(u)=h(t),其中F为R~n上的严格单调算子,本文给出了其渐近概周期解存在和唯一的一个充分条件和一个必要条件。
3.
We present existence theorem in C(R+) for asymptotically almost periodic solutions of second-order equations with gradient operators by means of the properties of asymptotically almost periodic functions.
利用渐近概周期函数的性质得到带梯度算子二阶方程的渐近概周期解在C(R+)中的存在性,同时利用迭代法和线性常微分方程的概周期解的存在性和唯一性,得到R上此方程渐近概周期解的存在和唯一性。
6) asymptotically-almost-periodic solution
新近概周期解
补充资料:庞加莱周期解
见周期解理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条