1) onedimensional rectangular potential barrier
一维方势垒
1.
The tunneling of an electron through a onedimensional rectangular potential barrier is analysed when the energy of the incident electron is equal to the height of the barrier The relationship between the transmission coefficient and the height and the width of the barrier is deduced, and it is proved that the transmission coefficient is a continuous function of the energy of the incident electro
文中对入射电子能量等于一维方势垒高度时,电子对势垒的透射情况进行了理论分析,导出了这一条件下的电子透射系数与势垒高度及势垒宽度之间的关系,并证明了电子对一维方势垒的透射系数T是入射电子能量E的连续函数。
2) one-dimensional tunnel barrier
一维势垒
3) symmetric one-dimensional barrier
一维对称双势垒
4) square-potential barrier
方势垒
1.
Making use of the square-potential barrier to describe the influence of the insulating layer on the quasi-particle transport in normal metal/insulator/superconductor (NIS) tunnel junctions, we calculate the quasi-particle transport coefficients and the differential conductance using the Bogoliubov-de Gennes(BdG)equation and Blonder-Tinkham-Klapwijk(BTK) theory.
在正常金属 /绝缘层 /s波超导隧道结 (NIS结 )中 ,以方势垒描述绝缘层对准粒子输运的影响 ,运用Bogoliubov-deGennes(BdG)方程、Blonder-Tinkham-Klapwijk(BTK)理论 ,计算了NIS隧道结中的准粒子输运系数和微分电导 。
2.
Taking into account the impurities scattering in the normal metal region, using square-potential barrier to describe the insulating layer, we study further the tunneling spectrum of the normal metal/insulating layer/s-wave superconductor tunnel junctions making use of Bogoliubov-de Gennes(BdG) equation and Blonder-Tinkham-Klapwijk(BTK) theory.
以方势垒描述绝缘层,考虑正常金属区域的杂质散射,运用Bogoliubov-deGennes(BdG)方程和Blonder-Tinkham-Klapwijk(BTK)理论,对正常金属/绝缘层/s波超导隧道结(NIS结)中的隧道谱作进一步研究。
5) square barrier
方势垒
1.
Anomalies of tunnel spectra in normal metal/insulator/d-wave superconductor junctions under the influence of insulator square barrier——Study under the condition of superconducting phase factor φ_±=0;
绝缘层方势垒影响下N/I/d波超导体结隧道谱的奇异性——超导相位因子φ_±=0情况下的研究
2.
Taking into account the inelastic scattering of the quasi-particles and the impurities scattering in the normal metal region,using the square barrier to describe the influence of the insulating layer on the quasi-particles transport in N/I/d-wave superconductor junctions,we calculate the tunnel spectra utilizing the Bogoliubov-de Gennes(BdG) equation and Blonder-Tinkham-Klapwijk(BTK) theory.
考虑准粒子的非弹性散射和正常金属区域的杂质散射,以方势垒描述N/I/d波超导体结中绝缘层对准粒子输运的影响,运用Bogoliubov-de Gennes(BdG)方程和Blonder-Tinkham-Klapwijk(BTK)理论,计算了N/I/d波超导体结的隧道谱。
3.
Using the square barrier to describe the influence of the insulating layer on the quasi-particle transport in N-I-d-wave superconductor junctions, we calculate the tunnel spectra utilizing the Bogoliubov-de Gennes(BdG) equation and Blonder-Tinkham-Klapwijk (BTK) theory.
以方势垒描述N-I-d波超导体结中绝缘层对准粒子输运的影响,通过求解Bogoliubov-de Gennes(BdG)方程,利用Blonder-Tinkham-Klapwijk(BTK)理论,计算了N-I-d波超导体结的隧道谱。
补充资料:pn结势垒(barrierofp-njunction)
pn结势垒(barrierofp-njunction)
pn结的空间电荷区中,存在由n边指向p边的自建电场。因此,自然形成n区高于p区的电势差Vd。相应的电子势能之差即能带的弯曲量qVd称为pn结的势垒高度。pn结的p区和n区的多数载流子运动时必须越过势垒才能到达对方区域,载流子的能量低于势垒高度,就被势垒阻挡而不能前进,这个垫垒叫做pn结势垒。pn结的势垒高度与两边半导体中的杂质浓度及其分布、温度以及半导体材料的禁带宽度Eg有关。除pn结势垒外,还有金属与半导体接触的接触势垒(肖特基势垒)、半导体表面形成的表面势垒等。势垒高度受外加电场的影响,当外加电场削弱势垒区中电场时,势垒降低,载流子容易通过;外加电场加强势垒区的电场时,势垒高度升高,载流子不易通过。利用pn结势垒这一特性可制成整流、检波等多种半导体器件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条