1) cubic algebric curve solution
三次代数曲线解
1.
In this paper,nonexistence of limit cycle for the c ubic system in plane with two cubic algebric curve solutions y2=(ax3+bx)2 was proved by qualitative analysis method,however,the singular closed orbit can exist in some cases.
用定性分析的方法,证明了具有两条三次代数曲线解y2=(ax3+bx)2的平面三次系统无极限环,但可以有奇闭轨。
2) Four algebraic curve solution
四次代数曲线解
3) cubic algebraic curve
三次代数曲线
1.
G~2-continuous cubic algebraic curve with the given tangent polygon;
与给定切线多边形相切的G~2连续的三次代数曲线
4) cubic curve solution
三次曲线解
1.
The existence of limit cycles for the Kolmogorov cubic system with a class of cubic curve solution;
具有一类三次曲线解的Kolmogorov三次系统的极限环的存在性
2.
In this paper, we prove that there exist at least four the limit cycles distributing in the form (2,2) in a central symmetry cubic system with a cubic curve solution xy 2+y=x 3 .
本文证明了具有三次曲线解xy2+y=x3的中心对称三次系统的极限环存在,而且至少可以存在四个极限环,它们作(2,2)分布。
5) algebraic curve solution
代数曲线解
1.
By means of the sufficient and necessary condition of the second order polynomial system s integrability and the division theorem of polynomial functions in two variables in the complex domain, we obtain some criterion for the non_existence of Brusselator equation algebraic curve solution.
依据管克英、雷锦志在IntegrabilityofSecondOrderAutonomousSystem一文中给出的二阶多项式自治系统可积的充要条件,通过复域上二元多项式函数整除定理,判定了Brussela tor方程不存在代数曲线解。
2.
By division theorem of polynomial functions, we prove strictly that the travelling solution equation of Burgers_KdV equation has the algebraic curve solution if and only if parametres satisfy the special relation.
利用整除定理严格论证了在参数满足特殊关系时Burgers_KdV行波解方程才存在代数曲线解,并且仅在此参数关系下方程是Liouville可积的。
6) algebraic solution curves
代数解曲线
补充资料:Hesse曲线(代数曲线的)
Hesse曲线(代数曲线的)
Hessian (algebraic curve)
11油限曲线(代数曲线的)【H台自11(.妙如允.抖e);recc咖,T~aaa,即r药pa一吸ee二o‘二p.助蓝] n次代数曲线(司罗玩水c~)的He丈祀曲线就是其极二次曲线能分裂为两条直线的点的集合,也是第一极曲线的二重点构成的集合.n次非奇异曲线的He丈七曲线是一条次数为3伪一2)、类为3(n一2)(3n一7)的曲线.设介O是这条n次曲线的齐次坐标方程,关丘=刁:f/刁xi刁、,则它的He丈犯曲线的定义方程为 !不:关:五,} }五:关:五31=0. }人,人2人3}特征不等于3时的三次非奇异曲线的H既七曲线与这条曲线交于9个通常拐点.因O.H改e(l 844)而得名. A .E.H困阳。B撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条