1) asymptotically linear mapping
渐近线性映射
1.
In the first part of this paper, some behaviors of asymptotically linear mappings at infinity were discussed.
讨论渐近线性映射在无穷远处的性质,通过本身的性质展现其原函数的性质。
2) Asymptotically nonexpensive mappings
渐近非线性扩张映象
3) Asymptotically linear
渐近线性
1.
Existence of positive solutions for asymptotically linear Neumann problem;
一类渐近线性Neumann问题正解的存在性
2.
x∈Ω,by using the variational methods,the existence of positive solution is obtained for a class of asymptotically linear Dirichlet problem.
x∈Ω关于t在(0,+∞)上单调递增的条件下,利用变分法获得了一类渐近线性D irich let问题正解的存在性结果。
3.
This means that the nonlinear term is superlinear at the positive infinity but asymptotically linear at the negative infinity.
考虑一类特殊的D irich let问题,即非线性项在负无穷远处为渐近线性,而在正无穷远处为超线性,并通过一定的技巧证明获得了该问题非平凡解的存在性。
4) asymptotically nonexpansive mappings
渐近非扩张映射
1.
Weak convergence theorem of asymptotically nonexpansive mappings in Banach space;
Banach空间中渐近非扩张映射的弱收敛定理
2.
In particular, fixed point problems of asymptotically nonexpansive mappings in product space are discussed, the convergence problems of the new interative sequence for nonexpansive mappings under specific conditions are discussed in this thesis.
特别讨论了积空间中渐近非扩张映射的不动点问题,研究了某些非扩张映射迭代序列在特定条件下的收敛性问题。
5) asymptotically nonexpansive mapping
渐近非膨胀映射
1.
A theorem on weak convergence for asymptotically nonexpansive mappings is proved and the result of Passty is generalized.
讨论了具有Frechet可微范数的一致凸Banach空间上的渐近非膨胀映射序列的弱收敛性,推广了Passty的结果。
2.
In this paper, we consider the fixed point problems of asymptotically nonexpansive mappings on the weak compact or compact subset of the Banach space, and under some boundary conditions, proving that these mappings have fixed points.
本文考虑了Banach空间上有界弱紧子集及紧子集上的渐近非膨胀映射的不动点问题,在一定的边界条件假设下,证明了这类映射有不动
6) asymptotically nonexpansive mapping
渐近非扩张映射
1.
Convergence theorems for asymptotically nonexpansive mappings in Banach space;
Banach空间中渐近非扩张映射的收敛定理
2.
First give the definition of a new mapping—(L-α) uniformly lipschitz asymptotically nonexpansive mapping on a uniforn convex Banach space,then construct three-step iterative sequences of(L-α) uniformly lipschitz asymptotically nonexpansive mapping in this subset.
首先定义一致凸Banach空间某非空紧子集上的一种新的映射—(L-α)一致李普希兹渐近非扩张映射,在该子集上构造关于(L-α)一致李普希兹渐近非扩张映射的三步迭代序列,然后来讨论三步迭代序列的收敛性。
3.
A convergence of Ishikawa iteration sequence with errors is investigated in this paper for asymptotically nonexpansive mapping in uniformly convex Banach spaces.
在一致凸 Banach(巴拿赫 )空间中研究了渐近非扩张映射的带误差的Ishikawa迭代序列的收敛性。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条