1) mean square Riemann Stieljes integral
均方Riemann-Stieljes积分
2) integral Riemann Stieljes
Riemann-Stieljes积分
3) Lebesgue-Stieljes integral
Lebesgue-Stieljes积分
1.
Based on the properties of indicator function and the theory of Lebesgue-Stieljes integral,we provided another method to prove Jordan formula and measure infer(super) limit inequality.
利用Lebesgue-Stieljes积分,结合示性函数的有关性质证明了著名的Jordan公式和测度上下极限不等式。
5) Riemann integral
Riemann积分
1.
Let be an abstract function on [a , b] and has values on Real Banach space X ,the equivalent description was given on the weak Riemann integral of ,at the same time,the relations between the weak Riemann integral and the Riemann integral in lp(1 < p< +∞ ) was discussed.
令是定义在[a,b]上,取值于实Banach空间X的抽象函数,给出了的弱Riemann积分的等价叙述。
2.
This paper investigates the relationships of Riemann Integral,Lebesgue Integral and Henstock Integral.
本文给出了Riemann积分、Lebesgue积分与Henstock积分的关系。
6) weak Riemann integral
弱Riemann积分
1.
Let be an abstract function on [a , b] and has values on Real Banach space X ,the equivalent description was given on the weak Riemann integral of ,at the same time,the relations between the weak Riemann integral and the Riemann integral in lp(1 < p< +∞ ) was discussed.
令是定义在[a,b]上,取值于实Banach空间X的抽象函数,给出了的弱Riemann积分的等价叙述。
补充资料:Riemann积分
Riemann积分
Rianann integral
R~积分IRI。田日nnin魄间;入M阴a朋犯印助] Ca几凶y积分(Quchy integ阔)概念向一类不连续函数的一种推广,由B.R~(1853)引人.设函数f给定在区间[a,b1上,又设“=‘。<‘,<‘.’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条