1) suborthocompact
次正紧空间
1.
オetacompact space and submetacompact space are especially studied in the classes of orthocompact space and suborthocompact space,two representing theorems are gained;a theorem of Junnila is generalized,a characterization of submetacompact space is gained.
从正紧空间与次正紧空间的角度讨论了亚紧空间与次亚紧空间,得到了亚紧空间与次亚紧空间的两个表示定理;推广了Junnila的一个定理,得到了次亚紧空间的一个刻划。
2) subcompact spaces
次紧空间
1.
The concepts of subcompact spaces are introduced, which is weaker than compactness.
定义了次紧空间的概念,它是一类弱于紧性的拓扑空间。
3) submetacompact
正紧空间
1.
オetacompact space and submetacompact space are especially studied in the classes of orthocompact space and suborthocompact space,two representing theorems are gained;a theorem of Junnila is generalized,a characterization of submetacompact space is gained.
从正紧空间与次正紧空间的角度讨论了亚紧空间与次亚紧空间,得到了亚紧空间与次亚紧空间的两个表示定理;推广了Junnila的一个定理,得到了次亚紧空间的一个刻划。
5) orthocompact
次亚紧空间
1.
オetacompact space and submetacompact space are especially studied in the classes of orthocompact space and suborthocompact space,two representing theorems are gained;a theorem of Junnila is generalized,a characterization of submetacompact space is gained.
从正紧空间与次正紧空间的角度讨论了亚紧空间与次亚紧空间,得到了亚紧空间与次亚紧空间的两个表示定理;推广了Junnila的一个定理,得到了次亚紧空间的一个刻划。
6) subparacompact space
次仿紧空间
1.
Three kinds of locally subparacompact spaces are defined.
在次仿紧空间的基础上定义了3种局部次仿紧空间,分别讨论了它们的有关性质。
补充资料:边界紧空间
边界紧空间
peripherically - compact space
的紧子集,的空间,称为可数型空间(spaCe ofcoUn·tablet班祀),见[AI].边界紧空间l户妙‘改勿一阴1声Ct明ce;nep一帜p。-tlec姗6脚抑那”oe”poc甲al,c卿」 具有紧边界开集基(base)的拓扑空间(topolo乡cal印ace).一个完全正则边界紧空间具有零维剩余的紧化(在小归纳维数意义下,见紧化(co宜甲act币cation);剩余(空间的)(re例妇nder of asP即e);维数(山n犯们-sion)).如果每个紧子集A C=X含于另一个紧子集B cX,且B在X中有可数的基本邻域系(例如,X为可度量化空间),则X的边界紧性等价于具有零维剩余的X之紧化的存在性.【‘卜氰覆蒸夸掣幸纂拿晕纂馨擎嘿巍邻域基
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条