1) nonlinear Riemann-Hilbert problem
非线性Riemann-Hilbert问题
2) Quasi-linear Riemann-Hilbert problems
拟线性Riemann-Hilbert问题
3) Riemann-Hilbert problem
Riemann-Hilbert问题
1.
This paper considers orthogonal polynomials with respect to certain weights on the unit circle and establish strong asymptotic formulas for them on entire complex plane, which is based on the steepest descent method for oscillatory Riemann-Hilbert problems introduced by Deift P.
所引进的关于振荡型Riemann-Hilbert问题的最速下降法,建立了这类正交多项式在整个复平面上的强渐近公式,发展和改进了一些经典结果。
4) Riemann-Hilbert boundary value problem
Riemann-Hilbert边值问题
1.
Riemann-Hilbert boundary value problems for general k regular functions in the Clifford analysis;
Clifford分析中广义k正则函数的Riemann-Hilbert边值问题
2.
K-regular function and its Riemann-Hilbert boundary value problem;
k-正则函数及其Riemann-Hilbert边值问题
3.
We study the Riemann-Hilbert boundary value problems for some classes of hyperbolic equations in commutative quaternion algebra space with basis elements 1,i,j,k satisfying the relationship i~2=j~2=-1,ij=ji=k,and obtain the general solutions and the solvable conditions of the problems respectively in different cases.
考察了在可交换四元数空间(基元为1,i,j,k满足条件i~2=j~2=-1,ij=ji= k)中的某些双曲型方程的Riemann-Hilbert边值问题,分别在不同的情况下获得了问题的可解条件和通解。
5) generalized Riemann-Hilbert problem
广义Riemann-Hilbert问题
1.
The generalized Riemann-Hilbert problem for the first order elliptic systems is studied.
讨论一阶椭圆型方程组的广义Riemann-Hilbert问题,利用广义解析函数和奇异积分理论以及不动点原理,证明在适当的假设下,此边值问题可解。
2.
The paper discusses the generalized Riemann-Hilbert problem for the generalized analytic function.
讨论了广义解析函数的广义Riemann-Hilbert问题,通过把它们转化为相应的Riemann问题,证明在适当的假设下,此边值问题可解。
6) the generalized Riemann Hilbert-Poincaré boundary value problem
广义Riemann-Hilbert-Poincare问题
补充资料:Riemann-Hilbert问题(解析函数)
Riemann-Hilbert问题(解析函数)
Rionann-Hilbert problem (analytic functions)
Rien.口.·H刃帷rt问题(解析函数)【Ri~一Hi】bert脚咖舰(a回州c云.‘t加s);p.Maoa一介月诵epTa 3a-皿明a」 见解析函数论的边值问题(boundary铂】ue pro-blems of analytjc funetion此。ry).【补注】参考文献 【All Rodin,Yu .L.,The Riemann boundaryp拍blem on 凡~皿s盯faces,R配d,1988(译自俄文). 杨维奇译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条