说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 复合Riemann-Hilbert边值问题
1)  Riemann-Hilbert's boundary value problem
复合Riemann-Hilbert边值问题
1.
Compound Riemann-Hilbert′s boundary value problem under finite groups of Mbius transformation;
有限Mbius变换群下的复合Riemann-Hilbert边值问题
2)  Riemann-Hilbert boundary value problem
Riemann-Hilbert边值问题
1.
Riemann-Hilbert boundary value problems for general k regular functions in the Clifford analysis;
Clifford分析中广义k正则函数的Riemann-Hilbert边值问题
2.
K-regular function and its Riemann-Hilbert boundary value problem;
k-正则函数及其Riemann-Hilbert边值问题
3.
We study the Riemann-Hilbert boundary value problems for some classes of hyperbolic equations in commutative quaternion algebra space with basis elements 1,i,j,k satisfying the relationship i~2=j~2=-1,ij=ji=k,and obtain the general solutions and the solvable conditions of the problems respectively in different cases.
考察了在可交换四元数空间(基元为1,i,j,k满足条件i~2=j~2=-1,ij=ji= k)中的某些双曲型方程的Riemann-Hilbert边值问题,分别在不同的情况下获得了问题的可解条件和通解。
3)  Riemann-Hilbert problem
Riemann-Hilbert问题
1.
This paper considers orthogonal polynomials with respect to certain weights on the unit circle and establish strong asymptotic formulas for them on entire complex plane, which is based on the steepest descent method for oscillatory Riemann-Hilbert problems introduced by Deift P.
所引进的关于振荡型Riemann-Hilbert问题的最速下降法,建立了这类正交多项式在整个复平面上的强渐近公式,发展和改进了一些经典结果。
4)  Riemann boundary value problem
Riemann边值问题
1.
Riemann boundary value problem for K-hypemonogenic functions in Clifford analysis;
Clifford分析中K超正则函数的Riemann边值问题
2.
Riemann boundary value problems and inverse problems for a kind of k regular functions in Clifford analysis;
Clifford分析中一类k正则函数的Riemann边值问题和它的逆问题
3.
The distribution solution of a class of Riemann boundary value problems and the inverse problems for generalized regular functions in Clifford analysis;
Clifford分析中广义正则函数的一类Riemann边值问题和逆问题
5)  Riemann boundary problem
Riemann边值问题
1.
Riemann boundary problems containing Carleman shifts and derivatives areconsidered in this paper.
本文讨论了带Carleman位移并合导数的Riemann边值问题,获得了此问题是Noether可解的条件及指标公式,并将所得结论应用于讨论带位移的奇异积分-微分方程和带位移的高阶奇异积分方程。
2.
Through the analysis on the unknown function,we transfer the Riemann boundary problem with radical sing to general Riemann boundary problem.
本文通过对未知函数Ψ(z)结构的分析,把带根号的Riemann边值问题化为一般的Riemann边值问题,并通过对后者的求解,得到前者的一般解及其可解条件。
6)  Riemann boundary value problems
Riemann边值问题
1.
A class of non-normal type Riemann boundary value problems with square roots;
非正则型带平方根的Riemann边值问题
2.
Riemann boundary value problems for bianalytic functions on infinite straight line;
无穷直线上的双解析函数的Riemann边值问题
3.
Riemann boundary value problems for bianalytic functions on open segmental arc are investigated?The solvability of the problems is discussed ,and the theorems of solvability of the problems are obtained
研究双解析函数在开口弧段上的Riemann边值问题 ,讨论该边值问题的可解性 ,给出其可解性定
补充资料:微分边值问题的差分边值问题逼近


微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems

  微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的1,则无论取什么范数都无收敛性.如果;簇1,且范数为 !lu‘}!,=suo}“几}.则问题(2)是稳定的,因而有收敛性(见[2],[3]): 11[uL一价l,认=O(内). 差分问题代替微分问题是用计算机近似求解微分边值问题的最通用的方法之一(见【7]). 微分问题用其差分的近似代替开始于!l],【2]和[41等著作.这一方法有时还用来证明微分问题解的存在,按下述方案进行,先证明微分边值问题的差分近似的解。*的集合对h是紧的,然后即可证明某一子序列u‘在h*~0时的极限是微分问题的解认如果该解已知是唯一的,则不仅子序列,而且整个u。集在h~0时都收敛到解u.【补注】补充的参考文献见微分算子的差分算子通近(aPpoximation of a di亚rential operator by diffe-ren沈operators)的参考文献.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条