1) Gauss continued fraction method
Gaus连续分数法
2) continuous fraction method
连续分数法
1.
By means of the continuous fraction method, the author obtains the exact solutions of the Schrdinger equation with the potential V(r)=Ar -4 +Br -3 +Kr -1 , which express the interactions between ions and atoms.
采用连续分数法得到了表示原子、离子间相互作用势V(r) =Ar-4+Br-3 +Kr-1的Schr dinger方程的精确解 。
2.
By means of the continuous fraction method,an exact solution of the radial Schro¨dinger equation for the potential V(r)=α1r4+α2r+β3r-1+β2r-3+β1r-4is obtained.
采用连续分数法,得到势V(r)=α1r4+α2r+β3r-1+β2r-3+β1r-4的径向Schro¨dinger方程的解析解,并作适当的讨
3.
By means of the continuous fraction method,an exact solution of the radial Schrdinger equation for the potential V(r)=α 1r 10 +α 2r 4+α 3r 2+β 3r -4 +β 2r -6 +β 1r -10 is obtained here.
采用连续分数法,得到势函数V(r)=α1r10+α2r4+α3r2+β3r-4+β2r-6+β1r-10的径向Schr¨odinger方程的精确解。
3) continuous count method
连续计数法
4) real continuation method
实数连续法
1.
The general continuation method which can find all solutions to polynomial equations in complex field and the real continuation method which can find part of real solutions to polynomial equations in real field are introduced.
介绍了在复数域内求多项式方程组全部解的连续法和在实数域内求任意非线性方程组多组实数解的实数连续法,讨论了两种方法的应用情况,通过实例比较了两种方法的计算效率,为工程中非线性问题的求解提供了有效的途径。
5) continuous process method
连续分步法
6) method of continuous exponential smoothing
连续指数修匀法
补充资料:连分数的渐近分数
连分数的渐近分数
convergent of a continued fraction
连分数的渐近分数l阴ve吧e时ofa阴‘毗d五,比.;n侧卫xp口.坦”八卯6‘] 见连分数(con tinued fraction).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条