1) continuous piecewise Lyapunov functions
连续分段Lyapunov函数
1.
Sufficient condition of stability is given by using continuous piecewise Lyapunov functions.
本文分析了在特定切换控制函数作用下,切换系统的稳定性,用连续分段Lyapunov函数讨论了切换系统稳定的充分条件。
2) Piecewise Lyapunov function
分段Lyapunov函数
1.
Piecewise Lyapunov function is utilized to demonstrate the stability and H∞ performance of the system.
根据特性将系统建模为切换系统,利用分段Lyapunov函数对系统的稳定性及H∞性能进行论证,并以线性矩阵不等式(LMI)形式给出H∞控制器需满足的条件。
2.
Discrete T-S fuzzy model is considered as uncertain linear system,and a controller design method based on linear matrix inequality(LMI) and piecewise Lyapunov function is proposed.
为了探讨模糊控制系统的稳定性分析和设计方法,依据模糊控制理论,把离散T-S模糊模型看成是一个线性不确定系统,提出了基于线性矩阵不等式和分段Lyapunov函数的模糊控制器设计方法。
3.
Consequently,based on the piecewise Lyapunov function and considered the interactions among the fuzzy subsystems in each subregion,the relaxed stabilization conditions are derived for the switching DFBS.
然后,基于分段Lyapunov函数,同时考虑同一个子空间内不同模糊子系统之间的相互作用,得到了闭环系统放松的渐近稳定的充分条件。
4) piecewise continuous real function
分段连续实函数
5) Piecewise Fuzzy Lyapunov Function
分段模糊Lyapunov函数
1.
Analysis and Design of Fuzzy Systems Based on Piecewise Fuzzy Lyapunov Function;
基于分段模糊Lyapunov函数的模糊系统分析与设计
2.
Firstly, a new sufficient condition to check the stability of open-loop discrete T-S fuzzy systems is proposed after the definition of a discrete piecewise fuzzy Lyapunov function.
研究了基于分段模糊Lyapunov函数的离散T-S模糊控制系统稳定性分析及控制器设计问题。
6) piece-wise quadratic Lyapunov function
分段二次Lyapunov函数
1.
A piece-wise quadratic Lyapunov function is used over the entire state region to transform the stability of the closed-loop MPC system into a linear matrix inequality problem,which can be efficiently solved using available convex programming algorithms.
通过在PWA模型的状态分区上,寻找分段二次Lyapunov函数,把闭环预测控制系统的稳定性分析问题转化为线性矩阵不等式(linear matrix inequality,LMI)问题,并应用现有的高效凸规划算法来求解。
补充资料:半连续函数
半连续函数
semi-continuous function
半连续函数l肥l企伽血以朋仙盆七叨;noJlyllenpep曰-阳a:中押刘”,」 定义在完全度量空间X上的扩充实值函数f,称为在点为沂x是下(上)半连续的(lo忱r(印per)s咖一cont~us),如果 粤j(‘))f(动〔瓦f(‘)‘f(“。)]函数.厂称为在X上是下(上)半连续的,如果它在X的每个点都是下(上)半连续的.单调增加(减少)的函数列,其中每个函数都在点x。是下(上)半连续的,那么它们的极限函数在x。仍是下(上)半连续的.若“和v分别为X上的下半连续和上半连续函数,且对所有的xeX,。(x)簇u(x),。(劝>一二,以劝<+田,那么存在X上连续函数f,使得对一切x任x,满足条件。(幻蕊f(x)镬“(x).设拼是R“上的非负正则Bo闭测度,则对任何召可测函数.f:R”一R,存在两个单调函数序列道。。}和{叭小满足如下条件:l)u。和。。分别是下半连续和上半连续的;2)每个u。是有下界的,而每个。。是有上界的;3){u。}是减少的序列而道。,}是增加序列;4)对一切x, “。(x)).f(义))v。(x);5) 。峡u。(‘)一。叭v。(‘)=f(x)拜几乎处处成立;6)若f在EC=R”上为拼可和,且.f‘L:(E,料),则u。,v。‘L,(E,拜)且 厄J二“。一厩J·。“;!一丁.厂‘。 石EE(Vitali.(、份t反油如ry定理(vilali一e汕川话习创了t恤”-化m)).【补注】下半连续与上半连续常缩写为!.s.c.与u.s.c二l,s.c与u.s.c.函数的概念也可以在拓扑空间X上定义.任何一个连续函数族的上(相应地,下)包络是1 .s.c.(u.s.c)的,且当X为完全正则时,其逆亦真;若X可度量化,上述结果对连续函数的可数族也成立.所以,度量空间X上的半连续函数必属于第一助i此类(Ba此ck比es).其逆不真. 设X=R,又设 r一1当二
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条