2) complete metric space
完备度量空间
1.
Fixed points on complete metric spaces;
完备度量空间中的不动点(英文)
2.
Uses the property of complete metric space and lemma [1.
利用完备度量空间的性质和引理[1。
3.
Using the property of complete metric space and related lemmas 1 and 2,the existence of common fixed point of a couple of fuzzy contractive mappings with inequality conditions and the cut set being nonempty closed bounded subsets of complete metric space X,is studied;and several theorems on the existence of common fixed point are given.
利用完备度量空间的性质和引理1、2,研究了在完备度量空间X中一对压缩型模糊映象当其截集是X中非空有界闭集时,该对压缩型模糊映象的公共不动点的存在性问题,推广了Vija-yaraju P和Marudai M论文的结论。
3) complete metric spaces
完备度量空间
1.
A new fixed point theorem in complete metric spaces for four mappings;
完备度量空间中四个映象的一个新的不动点定理
2.
Fisher B proved the following fixed point theorem:Let (X,d) and (Y,ρ) be complete metric spaces,let T be a continuous mapping of X into Y and let S be a mapping of Y into X satisfying the inequalities d (STx,STx′)≤C max { d (x,x′), d (x,STx), d (x′,STx′),ρ(Tx,Tx′)}ρ(TSy,TSy′)≤C max {ρ(y,y′),ρ(y,TSy),ρ(y′,TSy′),d(Sy,Sy′)} for all x,x′ in X and in Y,where 0≤C<1.
该文对此定理作一推广,从而得到了完备度量空间与紧度量空间上2 个新的不动点定理。
3.
By using the definition for compatible self-mappings in metric spaces,the existence of common fixed point for Φ expansive compatible mappings in complete metric spaces is considered.
利用度量空间中自映射对相容的定义,讨论了完备度量空间中Φ扩张相容映射公共不动点的存在性,推广和改进了张石生、谷峰等人一些相关的结果。
4) convex metric space
完备凸度量空间
1.
On the convergence of the Ishikawa iterates to a common fixed point of two mappings in complete convex metric spaces;
完备凸度量空间中两个映射的公共不动点的Ishikawa迭代强收敛定理
2.
The theorems on Ishikawa ierates strongly converging to a common fixed point for two mappings in complete convex metric spaces;
完备凸度量空间中Ishikawa迭代序列强收敛到两个映射的公共不动点定理
5) Complete separable metric group
完备可分度量群
6) Complete Fuzzy metric spaces
完备Fuzzy度量空间
补充资料:可公度量和不可公度量
可公度量和不可公度量
ommensulble and incommensuable magnitudes (quantities)
可公度t和不可公度t【~e璐u由lea目in~men-su.ble magultodes(quanti柱es);“洲口Mel娜M毗“”“”-113Mep目M曰e肠eJ皿,一皿曰』 如果两个同类量(例如两个长度或两个面积)具有或不具有公度(common measure,即另一个同类量,所考虑的两个量都是这个量的整数倍),则相应地称这两个量为可公度量或不可公度量.正方形的边长和对角线,或圆的面积和丫的半径的平方,都是不可公度量的例尹.如果两个量是可公度的,则‘l艺们的比是有理数;相反,不可公度量忿比是无理数、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条