说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 完备测度
1)  complete measure
完备测度
1.
Four methods about constructing complete measure space based on (Ω,F,μ) was given.
对给定测度空间 (Ω ,F,μ) ,给出了 4种建立完备测度空间的方法 :设 μ 是由 μ引出的外测度 ,令 F 为 μ 可测集全体 ,得到 (Ω ,F ,μ ) ;N 是 μ -零测集全体 ,令 F= {A∪N :A∈ F,N∈ N} ,定义 μ(A∪N) =μ(A) ,得到(Ω ,F,μ) ;令 FΔ ={AΔN :A∈ F,N∈ N} ,定义 μΔ(AΔN)=μ(A) ,得到 (Ω ,FΔ,μΔ) ;令 F ={A : A1、A2 ∈ F,使A1 A A2 且 μ(A1) =μ(A2 ) } ,定义 μ(A) =μ(A1) ,得到(Ω ,F,μ) 。
2)  complete measurable space
完备化测度空间
3)  complete regular measure
完备正则测度
4)  complete measure space
完备测度空间
5)  complete probability measure space
完备概率测度空间
1.
In this paper, we set up some random fixed point theorems for many continuous random operators by contraction scale function on Polish space, extend some results for the (89)、(93)and (94) kinds of Banach contractive mappings to complete probability measure space, unite and develop some random fixed point principles in recent years.
在Polish空间上,利用尺度函数建立了关于多连续随机算子的公共随机不动点定理,将第(89)、(93)和(94)类的Banach压缩映射的相应结果推广到完备概率测度空间上,改进、统一并发展了近年来的随机不动点的某些结果。
6)  Complete metric
完备度量
补充资料:哥德尔不完备性定理
哥德尔不完备性定理
G!!!G0352_1del's incompleteness theorem

   数学家K.哥德尔于1931年证明的两个定理。第一不完备性定理:任意一个包含算术系统在内的形式系统中,都存在一个命题,它在这个系统中既不能被证明也不能被否定。第二不完备性定理:任意一个包含算术系统的形式系统自身不能证明它本身的无矛盾性。
   哥德尔的不完备性定理使希尔伯特证明数论系统无矛盾性的方案归于失败。但哥德尔的证明中所用到的方法却开创了递归论的研究。哥德尔不完备性定理中所指出的不可判定的命题是理论的而不是自然的命题。1977年,J.帕里斯给出了一个自然的命题,这个命题在数论中是不可判定的。这又引起人们寻找这类问题的兴趣。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条