1) pairwisely independent
两两独立性
2) pairwise independent
两两独立
1.
x∈R ~+,(sup)n|X_n|≥x≤P|X|≥x, we prove their strong law of large numbers of type M-Z under independent, pairwise independent or φ-mixing situations respectively, i.
分别考虑不同分布随机变量序列Xn,n≥1为独立,两两独立和φ-混合情形,在其尾概率被随机变量X∈Lp一致控制(即对x∈R+,supnP|Xn|≥x≤P|X|≥x,成立)的条件下,证明了Marcinkiewicz-Zygmund型强大数律,即Sn-ESn/n1/p0n∞a。
2.
Let {X,Xn,n≥0} be a sequence of pairwise independent identically distributed random variables, 1<p<2.
设{X,Xn,n≥0}是两两独立同分布的随机变量序列,1
3.
The strong law of large numbers for double arrays of pairwise independ ent random variables was investigated and the following results obtained: Let b e double arrays of pairwise independent random variables and, when arbitrary ,a nd .
设为两参数两两独立的随机变量序列,若对任意的,且,,则。
3) two independences
两个独立性
1.
Regulative relationship is the genuine relationship of sufficient condition which includes two independences.
真正的充分条件关系刻划清楚后便是制约关系,事实上具有"两个独立性"。
4) independence two samples
两子样独立性
5) independent two-perameter
独立两参数
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条