1) fixed subgroup
不动子群
1.
By using the fixed subgroup Fixf π of f π, the homomorphism on π 1(X,x 0), and that the subgrup H=Fixf π· Ker f π of π 1(X,x 0) is regular subgroup, the fixed point large class is definied.
通过引进 π1 ( X,x0 ) 的同态 fπ 的不动子群 Fixfπ,在 H = Fixfπ ·kerf π为π1 ( X,x0 ) 的正规子群时定义了不动点大类,得到不动点大类数是有限的。
2) invariant subgroup
不变子群
1.
This paper mainly researches the relationship among the solution coset of linear equations form the angle of the coset of invariant subgroup,in the course of which the base and the dimension of quotient space have been found out.
从不变子群的陪集的角度研究线性方程组的解陪集之间的关系,并找到了商空间的基与维数。
2.
The article studies the propertes of Fuzzy homomorphism in groups,the results are obtained that the image φ ′ λ(W) of a subgroup W is also a subgroup,and the image φ ′ λ(H) of a invariant subgroup H is also a invariant subgroup.
研究群的Fuzzy同态性质 ,获得了子群W的像 φ′λ(W )也是子群 ,不变子群H的像φ′λ(H)也是不变子群 ;构造了两个特殊不变子群L =△{ y∈G2 | x∈G1,φ(x ,y) =φ(x ,e2 ) } ,φ- 1(e2 ) =△{x∈G1|φ(x ,e2 ) =1 } ,获得不变子群的一个重要性质及Fuzzy同态基本定
3) normal subgroup
不变子群
1.
This paper introduces the relationship between equivalence relation and subgroup, and from this equivalence law between congruence and normal subgroup can be deduced, The aim of this paper is to get a deeper understanding of equivalence relation, congruence, subgroup, normal subgroup and quotient group.
介绍了等价关系与子群的关系,并由此推导出同余关系与不变子群的等价定理,从而进一步加深对等价关系、同余关系、子群、不变子群以及商群的理解。
4) dynamic subgroup
动态子群
1.
Key agreement scheme based on GDH for virtual dynamic subgroup group;
基于GDH的协商式虚拟动态子群组密钥管理方案
2.
Virtual dynamic subgroup scheme;
虚拟动态子群密钥管理方案
5) normal sub semigroup
不变子半群
6) nonnormal subgroups
不正规子群
1.
In this paper we give the classification of finite groups which have only p mutually conjugate nonnormal subgroups,and the classification of finite groups which have only 2 nonnormal subgroups by means of studying the sylow subgroups of finite groups.
通过研究有限群G的Sylow子群,给出了恰有p(p>2)个相互共轭的非正规子群的有限群的完全分类,以及恰有2个不正规子群的有限的完全分类。
补充资料:群动
1.各种动物。 2.诸种活动。 3.泛指众人。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条