1) adapted sequences with Banach space values
B值适应随机序列
1.
Discuss the strong convergence of series on the adapted sequences with Banach space values by stop time and the convergence theorem for B-value martingale.
利用B值鞅收敛定理和停时方法,讨论B值适应随机序列的级数收敛性,得到了一类相应的强极限定理,使得已有的若干收敛定理成为所得定理的特例。
2) Arrays of B-valued adapted random element
B值适应随机元阵列
3) B-valued random sequences
B-值随机序列
1.
In this paper, we give the analogous concept of B-valued random sequences, and obtain some relative results.
本文对B-值随机序列给出了类似的概念,并得到了某些相应的结果。
4) Arrays of B-valued random element
B值随机元序列
5) adapted stochastic sequence
随机适应序列
1.
Strong convergence theorem for arbitrary adapted stochastic sequence;
关于一类随机适应序列的强收敛定理
2.
In this paper,we establish the strong limit theorem for an arbitrary adapted stochastic sequence.
设(Ω,F,P)为概率空间,{Xn,Fn,n 0}为定义在上面的随机适应序列。
6) stochastic adapted sequence
随机适应序列
1.
The strong limit qualities on partial sums of stochastic adapted sequences are studied by Doob Martingale convergence theorem.
利用Doob鞅收敛定理,研究随机适应序列部分和的强极限性质,得到了一类强极限定理和强大数定律。
补充资料:随机序列
随机序列
random sequence
随机序列[拍目佣1,月1.耽;c卿‘H明noc朋助B眼-剐Oc“1,离散时间随机过程(stoCb溺康pnx尤SSin曲crete ti叮℃),时间序列(tl叱s~) 定义在所有整数集t=O,士1,士2,…,或正整数集t=1,2,…,上的随机函数.A.M.凡刀。M撰【补注】参考文献见随机过程(s杖尤h姐tic Pro渊)及时间序列(tinrsen。).刘秀芳译陈培德校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条