2) nolinear boundary value problem with conjugate value and a kind of shift
带位移带共轭的非线性边值问题
1.
A nolinear boundary value problem with conjugate value and a kind of shift for a class of generalized regular function vectors in Clifford Analysis;
Clifford分析中广义正则函数向量的带位移带共轭的非线性边值问题
3) nonlinear boundary value problem with conjugation
带共轭的非线性边值问题
4) linear boundary value problems with conjugate value and a kind of shift
带位移带共轭的线性边值问题
5) linear conjugate boundary value problems with 4 elements
四元素线性共轭边值问题
1.
The solutions of linear conjugate boundary value problems with 4 elements are introduced.
四元素线性共轭边值问题的进一步讨论杨巧林扬州大学建工学院教科办,225009,扬州关键词四元素线性共轭边值问题,解析函数,黎曼边值问题分类号(中图)O175。
6) conjugate boundary value problem
共轭边值问题
1.
Multiple Positive Solutions for Singular (n -1,1) Conjugate Boundary Value Problem;
奇异(n-1,1)共轭边值问题的多重正解
2.
The existence of multiple positive solutions to a class of (k,n-k) conjugate boundary value problem of the n-th order di fferential equation with deviating arguments is investigated.
研究一类具偏差变元的 (k ,n -k)共轭边值问题多个正解的存在性 ,通过把所研究问题转化为相应的全连续算子的不动点问题 ,利用锥上不动点指数原理和Green函数界的估计 ,得到了此边值问题存在至少 2个正解的两组充分条件 。
3.
In the present article,we investigate a class of higher order singular conjugate boundary value problems,and some parametric intervals which ensures the existence or nonexistence of positive solutions to the problems are obtained by utilizing the Guo-Krasnoselskii Fixed point Theorem.
研究了一类带有参数的高阶奇异微分方程共轭边值问题,使用G uo-K rasnoselsk ii不动点定理得到了使得该问题正解存在与不存在的参数区间。
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条