1) nonlinear initial-boundary value problem
非线性初边值问题
1.
The present paper proves that the nonlinear initial-boundary value problem of the formexists unique nonnegative Similarity solution for each N>1 and each α>0.
证明了形如的非线性初边值问题,当N>1,a>0时存在唯一的非负相似解。
2) nonlinear boundary-initial value problems
非线性边值-初值问题
3) nonlinear boundary value problems
非线性边值问题
1.
A truly meshless local Petrov-Galerkin(MLPG) method was presented to solve nonlinear boundary value problems.
把一种真正的无网格局部Petrov-Galerkin方法用于求解非线性边值问题。
2.
Consider nonlinear boundary value problems of first-order impulsive functional differential equations.
考虑一阶脉冲泛函微分方程非线性边值问题,利用上下解方法和单调迭代技术得到了耦合解和唯一解存在的充分条件。
4) nonlinear boundary value problem
非线性边值问题
1.
Nil-solution for nonlinear boundary value problem under the ambrosetti-prodi type condition;
一类非线性边值问题Ambrosetti-Prodi型条件下的参数无解性
2.
Singular perturbation of Volterra type integro-differential equation for nonlinear boundary value problems;
某一类型积分微分方程非线性边值问题的奇摄动
3.
Existence and uniqueness of solutions for singularly perturbed third order nonlinear boundary value problems;
奇摄动三阶非线性边值问题解的存在性和惟一性
5) linear and no-linear boundary value problem
线性与非线性边值问题
6) nonlinear and non local boundary value problem
非线性非局部边值问题
1.
In this paper, we prove an existence theorem of solutions of a kind of nonlinear and non local boundary value problem of wave equations by Galerkin′s method.
用 Galerkin方法证明了波动方程的一类非线性非局部边值问题的解的存在性定理 。
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条