1) linear and no-linear boundary value problem
线性与非线性边值问题
2) nonlinear boundary value problems
非线性边值问题
1.
A truly meshless local Petrov-Galerkin(MLPG) method was presented to solve nonlinear boundary value problems.
把一种真正的无网格局部Petrov-Galerkin方法用于求解非线性边值问题。
2.
Consider nonlinear boundary value problems of first-order impulsive functional differential equations.
考虑一阶脉冲泛函微分方程非线性边值问题,利用上下解方法和单调迭代技术得到了耦合解和唯一解存在的充分条件。
3) nonlinear boundary value problem
非线性边值问题
1.
Nil-solution for nonlinear boundary value problem under the ambrosetti-prodi type condition;
一类非线性边值问题Ambrosetti-Prodi型条件下的参数无解性
2.
Singular perturbation of Volterra type integro-differential equation for nonlinear boundary value problems;
某一类型积分微分方程非线性边值问题的奇摄动
3.
Existence and uniqueness of solutions for singularly perturbed third order nonlinear boundary value problems;
奇摄动三阶非线性边值问题解的存在性和惟一性
4) nonlinear boundary-initial value problems
非线性边值-初值问题
5) nonlinear and non local boundary value problem
非线性非局部边值问题
1.
In this paper, we prove an existence theorem of solutions of a kind of nonlinear and non local boundary value problem of wave equations by Galerkin′s method.
用 Galerkin方法证明了波动方程的一类非线性非局部边值问题的解的存在性定理 。
6) nonlinear three point boundary value problems
非线性三点边值问题
1.
The methods of up-lower solution is used to study the existence of solutions of nonlinear three point boundary value problems for nonlinear 4 nth order differential equation.
本文利用上-下解的方法,讨论了非线性4n阶常微分方程的非线性三点边值问题解的存在性。
补充资料:线性边值问题
线性边值问题
linear boundary value problem
线性边值问题[如。r肠烟da叮柏如.脚曲址m;,批加aa印aeB明3明明a] 下述问题二在变量x二(xl,…,x。)的区域D中确定线性微分方程 (L。)(x)二f(x),xCD在此区域的边界S(或其一部分上)满足线性边界条件 (Bu)(y)=职(y),y‘S的解. 亦见边值问题,常微分方程(bouJldary姐】tle pro-blem,。记远叮differential叫uatio招);边值问题,偏微分方程(bol川妞卿珑面eproblem,p田石al由晚rent坛1闪明石。ns).A.n.C山班aToB撰张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条