2) linear algebraic equations
线性代数方程组
1.
Non-linear algebraic equations of the theory of the introduction of higher algebra construction of teaching materials for courses
探析非线性代数方程组理论引入高等代数课程之教材建设
2.
In this paper,new quadratic PEk method and quadratic EPEk method are given for solving a system of linear algebraic equations whose matrix of coefficients is tridiagonal blocked matrix.
建立求解系数矩阵为分块三对角矩阵的线性代数方程组的新型二次PEk方法以及其外插迭代二次EPEk方法,对系数矩阵为对称正定矩阵情形,证明了新型二次PEk方法和二次EPEk方法的可解性和收敛性。
3.
For the sake of improving numerical stability and convergence of iterative methods for linear algebraic equations,appropriate preconditioned methods are necessary.
为了提高线性代数方程组迭代法的数值稳定性和收敛速度,采用适当的预处理方法是必要的,本文从预处理共轭梯度法(PCG)的预处理方法出发,介绍了一些常用的预处理方法和相应的预处理矩阵,并分析了它们的适用条件,给出了预处理矩阵的判别原则。
3) system of linear algebraic equations
线性代数方程组
1.
The Gram-Schmidt s orthogonalization,row action method with the greedy method and dividing-conquering strategy were used to put forth a parallel numerical method of solving an arbitrary system of linear algebraic equations.
利用格拉姆-施密特(Gram-Schmidt)正交化方法、行处理法贪心方法和分治策略给出一种求解任意线性代数方程组的并行数值方法,证明该方法对任意的相容性线性代数方程组收敛,分析其计算复杂度和数值稳定性,探讨其在线性代数方程组消息传递并行算法研究中的应用前景。
2.
The authors Utilize Gram-Schmidt s orthogonalization to put forward a parallel method of judging the consistency of arbitrary system of linear algebraic equations and determinging the general solution of arbitraty consistent system of linear algebraic equations,analyze its computational complexity,numerical stability,and its intrinsic parallism.
利用Gram-Schmidt正交规范化方法给出了一种判断任意线性代数方程组相容性以及确定此方程组解结构的数值方法,分析了对应算法的计算复杂度、数值稳定性及内在并行性。
4) nonlinear algebraic equation
非线性代数方程
1.
In this paper,simulation of nonlinear algebraic equations with PSPICE is discussed.
本文讨论了非线性代数方程的PSPICE模拟问题,提出了K维非线性受控源及规则电路模型的概念。
2.
By using trial function method and introducing a new transformation, the nonlinear partial differential equation that is hard to be solved by making use of the regular technique can be reduced to a set of nonlinear algebraic equations, which can be easily solved, and their related coefficients can be easily determined by virtue of taking advantage of the approach of undetermined coefficients.
通过引入一个新的变换,利用试探函数法,并选取准确的试探函数形式,将一个难于求解的非线性偏微分方程化成了一组易于求解的非线性代数方程,从而简洁地求得了KdV方程的孤子解,所得结果与已有结果完全吻合。
5) linear algebra equations
线性代数方程组
1.
The high-performance solution of sparse linear algebra equations is very important in solving many problems from science and engineering applications, including computational fluid, simulation and design of materials, data processing in oil exploitation and earthquake prediction, numerical forecast of weather, and numerical simulation of nuclear blast.
稀疏线性代数方程组的高效求解是许多科学与工程计算的核心,如计算流体力学、材料模拟与设计、石油地震数据处理、数值天气预报从核爆数值模拟等都离不开稀疏线性代数方程组的求解。
补充资料:线性代数中的数值方法
线性代数中的数值方法
n linear algebra,numerical methods
叭咖e如aao6p。几孟蒸!_一,刀物长时。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条