说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Sylvester移位方程
1)  Sylvester displacement equation
Sylvester移位方程
2)  Sylvester equation
Sylvester方程
1.
On full rank solutions of sylvester equations;
关于Sylvester方程的满秩解
2.
Explicit analytic expressions of the gradients of the cost functions are derived via the Sylvester equation-based parametrization.
通过Sylvester方程参数化,我们为所提出的价值函数推导出明确的梯度公式。
3)  Sylvester matrix equation
Sylvester矩阵方程
1.
Local perturbation analysis for generalized Sylvester matrix equation;
广义Sylvester矩阵方程的局部扰动分析(英文)
2.
The necessary and sufficient condition functional observers are first established; based on Lyapunov stability theory and generalized Sylvester matrix equations, a design algorithm of observer for a class of linear time-delay systems is then proposed; finally two numerical examples shows the simplicity and the effectiveness of the proposed approach.
基于Lyapunov稳定理论和广义Sylvester矩阵方程的完全参数化解,给出了时滞系统函数观测器设计算法。
3.
The content of this paper consists of two parts:part one is how to solve the linear systems Ax=b iteratively,which coefficient matrices are centrosymmetric matrices; part two pays attention to solving the Lyapunov matrix equations and Sylvester matrix equations in control theory by numcrical methods.
本论文主要分为两部分:一部分是考虑了系数矩阵为中心对称矩阵的线性方程组Ax=b的迭代求解;另一部分是研究了控制理论中的Lyapunov矩阵方程和Sylvester矩阵方程的数值求解。
4)  generalized Sylvester equation
广义Sylvester方程
1.
Based on solvable Lie algebra condition and the complete form of the solution to generalized Sylvester equation, the eigenstructure assignment approach is proposed to establish the existent criterion of feedback control,through which the con- troller is explicitly formulated.
基于可解Lie代数条件及广义Sylvester方程的通解,利用特征结构配置方法建立了反馈控制的存在性准则,并由此给出了控制器的设计形式。
5)  generalized Sylvester matrix equations
广义Sylvester矩阵方程
1.
Based on a complete parametric solution to a class of generalized Sylvester matrix equations,parametric expressions for all the gain matrices of the observer are derived.
基于一类广义Sylvester矩阵方程的显式参数化解,根据一些自由参数给出了对偶Luenberger观测器所有增益矩阵的参数化表达。
6)  second-order Sylvester matrix equation
二阶Sylvester矩阵方程
1.
Robust solution to vibration second-order Sylvester matrix equation and its simulation analysis
振动二阶Sylvester矩阵方程鲁棒解法及仿真分析
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条