1) high-order arithmetical series
高阶等差数列
3) geometric sequence of difference
阶差等比数列
4) n order arithmetic progression
n阶等差数列
5) k arith metic progression
k阶等差数列
6) equivalent sum series of high order
高阶等和数列
1.
In this paper we first give a new formula for sum of series,and then research the sum of so called equivalent sum series of high order.
本文先给出一个新的求和公式,进而探讨高阶等和数列及其求和。
补充资料:高阶等差数列
高阶等差数列 higher arithmetic sequence 等差数列的推广。如果数列{an}的每相邻两项的差作成的数列{an+1-an}是一个公差不为零的等差数列,就称{an}为二阶等差数列,如果数列{an+1-an}是二阶等差数列,就称原数列{an}为三阶等差数列。一般地,如果{an+1-an}是K阶等差数列,就称原数列{an}为K+1阶等差数列,二阶以及高于二阶的等差数列统称为高阶等差数列。普通等差数列称为一阶等差数列。例如,数列12,22,32,…,n2,…的相邻项的差作成数列3,5,7,…,2n+1,…,是等差数列,公差为2,所以原数列是二阶等差数列。数列13,23,33,…,n3,……的相邻项的差数列是7,19,37,61,……,再作相邻项之差,得12,18,24,…,这是等差数列,公差为6。所以原数列是三阶等差数列。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条