说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 等差数列法
1)  arithmetic progression method
等差数列法
2)  arithmetic progression
等差数列
1.
Study of quantitative diagnostic method of wind observation data ——utility of arithmetic progression;
测风记录定量诊断方法的研究——等差数列的利用
2.
A core property of the arithmetic progression is the same difference.
等差是等差数列最核心的本质特征。
3.
The article approaches the resolution of the sum of preceding N terms among a type of particular sequence,which consists of arithmetic product of arithmetic progression or arithmetic product reciprocal.
对由等差数列的乘积以及乘积的倒数所构成的一类特殊的数列的前n项和的求解作了探讨,得出两个定理及6个推论以及应用。
3)  arithmetic series
等差数列
1.
The paper presents a further extension of a problem of sum limit from {n] to the arithmetic series {a_n].
将一和式极限问题中的特殊数列{n}推广到一般的等差数列{an},使得所得公式适用于求更广泛的和式的极限。
2.
If{a n} is arithmetic series with the first term a 1>0 ,and the common difference d>0 and s>0, writing as p n=mk=1(1+sa k), this paper gives a class of inequalities of the upper and lower bound of p n.
若 {an}是等差数列 ,首项a1>0 ,公差d >0 ,s >0 ,记Pn= nk =1 (1+ sak) 。
4)  arithmetic sequence
等差数列
1.
A property of finite arithmetic sequences and its application;
关于有穷等差数列的一个性质
2.
The essay obtains a set of more universal inequality by studying several inequality of the power of positive term arithmetic sequence.
本文通过对正项等差数列方幂的若干不等式研究,得出了一组更具普遍性的不等式。
3.
Finally,a series of the combinatorial identity are abtained by applying two Vandermonde typed determinant and the property of the arithmetic sequence.
利用一元多项式的思想给出了Vandermonde行列式的一种计算法,接着利用此方法讨论了具有Vandermonde类型行列式的计算,最后使用两个Vandermonde类型行列式和等差数列的性质构造一系列组合恒等式。
5)  K steps arithmetic progression
阶等差数列
6)  geometric-arithmetic sequence
等比差数列
1.
In this paper, the sum of geometric-arithmetic sequences is given, and their simple applacations are discussed.
讨论了等比差数列的求和并由此得到几个恒等式。
补充资料:高阶等差数列
高阶等差数列
higher arithmetic sequence

   等差数列的推广。如果数列{an}的每相邻两项的差作成的数列{an+1an}是一个公差不为零的等差数列,就称{an}为二阶等差数列,如果数列{an+1an}是二阶等差数列,就称原数列{an}为三阶等差数列。一般地,如果{an+1an}是K阶等差数列,就称原数列{an}为K+1阶等差数列,二阶以及高于二阶的等差数列统称为高阶等差数列。普通等差数列称为一阶等差数列。例如,数列12,22,32,…,n2,…的相邻项的差作成数列3,5,7,…,2n+1,…,是等差数列,公差为2,所以原数列是二阶等差数列。数列13,23,33,…,n3,……的相邻项的差数列是7,19,37,61,……,再作相邻项之差,得12,18,24,…,这是等差数列,公差为6。所以原数列是三阶等差数列。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条