说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 共变算子对
1)  Covariant Operators Pair
共变算子对
1.
Covariant Operators Pairs on Moore Penrose Inverses of Matrices between Various Real Finite Dimensional Division Algebras;
实有限可除代数间保矩阵M-P逆的共变算子对(英文)
2.
satisfy A~+ =B if and only if f(A)~+ =g(B) for all A μ_(mn), then we call (f, g) a Covariant Operators Pair on Moore-Penrose inverses of matrices.
如果两个线性算子f:μ_(mn)→ μ_(mn) 和g:μ_(nm)→μ_(nm)满足对一切存在M-P逆的A∈μ_(mn),都有f(A)~+存在并且A~+=B当且仅当f(A)~+= g(B),则称(f,g)为强保持矩阵M—P逆的共变算子对
2)  Covariance operator
共变算子
3)  Sharing Mutation
共享变异算子
4)  operator of covariant differentiation
共变微分算子
5)  Covariant-symmetric
共变对称
6)  adjoint operator
共轭算子
1.
Let Jgf(z)=∫10f(tz)Rg(tz)dtt be weighted Cesaro operator with holomorphic symbol g,and Igf(z)=∫10g(tz)Rf(tz)dtt be adjoint operator of Jg.
设βα(α≥1)为单位球上α-Bloch空间,Jgf(z)=∫01f(tz)Rg(tz)dt/t为加权Cesaro算子,Igf(z)=∫01g(tz)Rf(tz)dt/t为其共轭算子。
2.
In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems.
对于 n阶一般的非线性动力系统 ,根据线性算子的不变子空间理论和共轭算子概念 ,提出一种计算其规范形的新的矩阵表示方法。
3.
First we prove that 0 is an eigenvalue of the operator with geometric multiplicity one,next we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator,last we prove that 0 is an eigenvalue of the adjoint operator of the operator.
首先证明0是对应于该排队模型的主算子的几何重数为1的特征值,其次证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,然后证明0是该主算子共轭算子的特征值。
补充资料:不共变
【不共变】
 (术语)以各人不共之业而变现各人不共之境者,如五根是也。(参见:四变)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条