1) operator pair
算子对
1.
Lyapunov theorem of operator pairs in Hilbert space;
希尔伯特空间上算子对的李雅普诺夫定理
2) symmetric operator
对称算子
1.
Rank one preserving linear maps on spaces of symmetric operators;
对称算子空间上的保秩1线性映射(英文)
2.
The concepts of the basic symmetric operator and complete symmetric operator of the equivalent-electron regular Young tableau T~[λ])_(ig) are presented,and the concepts of the root state and generative state generated by these symmetric operators acting on each Slater function _i are also given.
给出了等价电子正则杨盘Tig[λ]的基本对称算子、完全对称算子概念,同时给出了这些对称算子作用于任一Slater函数φi所产生的根态、生成态概念。
3.
Utilizing the method of symmetric operator and affine transformation, for an arbitrary convex body K C R~n,it is proven directly that there exists affine trans- formation image ■ of K is istropic,or that it is in the istropic position.
本文利用对称算子和仿射变换的方法,对任一凸体K C R~n直接证明了存在K的仿射变换象■,使得■是迷向体,或称■处于迷向位置。
3) mating operator
配对算子
1.
The key to this algorithm is to use mating operator to improve the offspring s population diversity.
该算法的核心在于,使用配对算子来提高子代种群的多样性。
4) diagonal operator
对角算子
1.
Cyclic vectors and invariant subspaces for a diagonal operator Den=dnen on Hilbert space are studied.
在Hilbert空间上,就对角算子的循环向量和不变子空间进行了研究,并在一定的条件下给出了完整的刻画。
5) dual operator
对偶算子
1.
A to be determined coefficient method for finding dual operators of hierarchiesof non-linear evolution equations is proposed.
本文提出了寻求非线性演化方程的对偶算子的待定系数法。
2.
The paper has studied the structure of spectrum for dual operators and partial differen- tial operators on locally convex spaces,The main results are as follows: Theorem 1 Let X be a complete barrelled space.
研究了局部凸空间上对偶算子和偏微分算子的谱结构。
3.
Inverse and dual combination operator is defined as a new genetic operator based on respective application study of inverse operator and dual operator,which can improve local searching.
在逆序算子和对偶算子的性能研究基础之上,设计了逆序与对偶组合遗传算子,增强了局部搜索性能。
6) Lenard operators
Lenard算子对
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条