1) quantum matrix
量子矩阵
1.
It is well known that both additive and multiplicative coproducts can be constructed on the quantum matrix differential algebras.
量子矩阵上微分代数中可引入加性和乘性两种余积运算。
2) topological-quantum matrix
拓扑-量子矩阵
3) Compact matrix quantum group
紧矩阵量子群
4) Moment matrix
矩量矩阵
5) energy matrix
能量矩阵
1.
Expressions of electron Young tables for the spectral term wave functions and their energy matrixes of the equivalence electron (l~3 +l_ -~1);
等价电子(l~3+l_-~1)的谱项波函数及其能量矩阵的电子杨表表示
2.
Research on structural modal calculation by decomposing the energy matrix
能量矩阵法求解结构振动模态的研究
3.
If there is no geometry symmetries in the coordinate space, the energy matrix is composed of 2 N×2N complex matrix elements( N is the size of the basis employed).
当不存在任何几何对称性时,能量矩阵由2 N×2 N个复数矩阵元组成( N 为基矢的大小);如果空间存在1 个反射对称平面,该2 N×2 N复矩阵可约化为1 对互为共轭N×N复矩阵或1 个2N×2N实矩阵;如果存在2 个互相正交对称平面,则可约化为2 个N×N实矩阵。
6) Mass matrix
质量矩阵
1.
By revising the rotation displacement equation,a mass matrix of this kind of structure is derived by virtual principle in this paper.
采用虚功原理,通过对单元转角-位移方程的修正,推导了这种计算模型的单元质量矩阵,并编制了相应的弹性时程分析计算程序,分析了连接的半刚性在不同地震动作用下对钢框架结构动力性能的影响,并与有限元结果进行了比较。
2.
Revising the rotation displacement equation,the mass matrix and stiffness matrix of this kind of structure were derived by virtual principle.
采用虚功原理,通过对单元转角-位移方程的修正,推导了这种计算模型的单元质量矩阵和刚度矩阵。
3.
In the thesis, the author calculates the natural vibration frequencies of several wide-span bridges by using lumped mass matrix and consistent mass matrix.
利用自编程序和ANSYS结构分析软件对几座大跨度桥梁的自振特性分别采用一致质量矩阵和堆聚质量矩阵进行了计算比较。
补充资料:单量子阱(见量子阱)
单量子阱(见量子阱)
single quantum well
单且子阱sillgle quantum well见量子阱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条