1) clique signed domination number
团符号控制数
1.
The concept of clique signed domination in graphs is introduced,some lower bounds for the clique signed domination numbers of graphs are given,and the exact values of the clique signed domination numbers for some special graphs are determined.
引入了图的团符号控制的概念,给出了n阶图G的团符号控制数γks(G)的若干下限,确定了几类特殊图的团符号控制数,并提出了若干未解决的问题和猜想。
2) Clique signed domination function
团符号控制函数
3) signed domination number
符号控制数
1.
The signed domination number of a graph G, denoted γ S(G), equals the minimum weight of a signed dominating function.
图G的符号控制函数f的权重f(V)=∑v∈Vf(v)的最小值定义为图G的符号控制数,记为γs(G)。
2.
The signed domination number of a graph G, denoted γS(G), equals the minimum weight of a signed dominating function of G.
图G的符号控制数等于G的一个符号控制函数的最小权重,记为γS(G)。
3.
To obtain efficient strict algorithms for determining the signed domination number in a graph which is NP-hard,some heuristic bounding strategies are proposed.
确定图的符号控制数是NP-难度的问题。
4) the signed domination number
符号控制数
1.
In this paper, we study the signed domination number of graphs and obtain a lower bound for a k-partite graph.
研究图的符号控制数,得到了n阶k部图的符号控制数的一个下界,当δ=2时这个界是精确的,并且给出了δ=2时一个达到下界的图例。
5) signed edge domination number
符号边控制数
1.
And further, The supper bounds of the minimum signed edge domination numbers B(n)for bipartite graphs of order n are given.
对于任意正整数m和n,构造了一类偶图(二部图)G(m,n),其阶为2mn,边数为3mn-m-n,确定了其符号边控制数为γ′s(G(m,n))=m+n-mn。
2.
In this paper the lower bounds of siged edge domination number of G are obtained, that is, γ, ( G) ≥ the signed edge domination numbers for several classes of graphs are determined.
设G为一个n阶连通图,△和δ分别为图G的最大度和最小度,给出了图G的符号边控制数的一个下界,即γ',并确定了几类特殊图的符号边控制数。
3.
Some super bounds for signed edge domination numbers of graphs are given, several corresponding problems and conjectures are presented.
本文给出了n阶图的符号边控制数的上界,并提出了相关的若干问题和猜想。
6) reverse signed edge domination number
反符号边控制数
补充资料:符号逻辑(见数理逻辑)
符号逻辑(见数理逻辑)
symbotic logic
tun叩Iuo”_符号逻辑(s,mb。牡clog玩)见数理逻择。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条