1) signed star domination number
符号星控制数
1.
the concept of signed star domination was introduced in , and in which the signed star domination numbers of all complete graphs were determined.
文[1~2]中引入了图的符号星控制概念,并确定了完全图的符号星控制数。
2.
In this paper we introduce the concept of signed star domination number (G ) γ~′_(ss)(G ) of a graph G , obtain the bounds of γ~′_(ss)(G ).
引入了图的符号星控制概念 ,确定了一个n(n≥ 4 )阶图G符号星控制数γ′ss(G)的界限 ,即 n2 ≤γ′ss(G)≤ 2n - 4 ,并确定了完全图的符号星控制
3.
The signed star domination numbers for the graphs of Km×Cn,Cm×Cn,Km×Kn are given.
给出Km×Cn,Cm×Cn,Km×Kn这三类图的符号星控制数。
2) signed star domination function
符号星控制函数
3) reverse signed star domination number
反符号星控制数
1.
Let G=(V,E) be a graph without isolated vertices,a function:f:E→{+1,-1} is said to be a reverse signed star domination function(RSSDF) of G if ∑f(e)≤0 holds for every v∈V(G),where e is the edge of the star which v belongs to,and γ′rss(G)=max{∑f(e)|f is an RSSDF of G,e∈E(G)} is called the reverse signed star domination number of G.
而γr′ss(G)=max{∑f(e)|f为图G的反符号星控制函数,e∈E(G)}称为图G的反符号星控制数。
4) signed star k domination number
符号星k控制数
5) reverse signed star domination function
反符号星控制函数
1.
Let G=(V,E) be a graph without isolated vertices,a function:f:E→{+1,-1} is said to be a reverse signed star domination function(RSSDF) of G if ∑f(e)≤0 holds for every v∈V(G),where e is the edge of the star which v belongs to,and γ′rss(G)=max{∑f(e)|f is an RSSDF of G,e∈E(G)} is called the reverse signed star domination number of G.
引入了图的反符号星控制的概念,设G=(V,E)是一个没有孤立点的图,一个函数f:E→{+1,-1}对一切点v∈V(G)所在的星中的边e有∑f(e)≤0成立,则称f为图G的一个反符号星控制函数。
6) Signed Star Domination Numbers of Graphs
图的符号星控制数
补充资料:符号逻辑(见数理逻辑)
符号逻辑(见数理逻辑)
symbotic logic
tun叩Iuo”_符号逻辑(s,mb。牡clog玩)见数理逻择。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条