说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 复数域分形
1)  fractal in complex domain
复数域分形
1.
Taking the fractal in complex domain as an example, the complex fractal dimension and the like are taken as follows: D=a+ib, r=x+iy,C=C x+iC y,N=N x+iN y.
复数域分形为例 ,其中 :复分维数D =a +ib ,r =x +iy ,C =Cx+iCy,N =Nx+iNy。
2)  neighborhood complex
邻域复形
1.
Some structures and properties of neighborhood compleies of trees are discussed and several conditions that high dimention 2-forest is neighborhood complex of tree are ob-tained.
研究了树的邻域复形的结构和性质,得出了几种高维2—林是树的邻域更形的条件。
2.
Define the neighborhood complex N(G) as the simplicial complex whose simplices are those subsets of V(G) which have a common neighbor.
一个图G的邻域复形是以G的顶点为顶点,以G的具有公共邻接顶点的顶点子集为单形的抽象复形。
3)  complex field
复数域
1.
For constructed formula ①,and make integrand (formula) in complex field decompose into 2n times complexroots,and make real and imaginary part in real number field integrate and then obtain the limit,presenting constructed formula ②.
对构造的公式①,在复数域将其被积函数分解得2n个复根。
4)  complex number field
复数域
1.
Based on a case study of the Watt linkage,the bifurcation equation with angle variables has been established in complex number field.
以瓦特六杆机构为例,在复数域内建立了以角度为变量的复数形式机构分叉分析方程。
2.
It also points out that the special couple of ordered real numbers and 2 by 2 demensional vectors and the matrice all can be defined as the complex number field .
本文阐明了域和同构的概念,并证明了有序实数组、二维向量和二阶矩阵的同构关系,指出特殊的实数组、二维向量和二阶矩阵都可以定义复数域。
5)  field of complex numbers
复数域
1.
Lattice-orderings on the field of complex numbers;
复数域的格序化问题研究
6)  complex numerical range
复数值域
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)

伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条