说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 点态非游荡映射
1)  pointwise nonwandering map
点态非游荡映射
2)  non-wandering point
非游荡点
1.
It is proved that Poisson-stable points are dense in the locally compact phase space X if and only if non-wandering points are dense in the X.
证明了如果相空间X局部紧,则Poisson稳定点在X中稠与非游荡点在X中稠等价。
2.
This article discusses a few important point sets: wandering point set,non-wandering point set and recurrence point set in a topological dynamical system,obtains the equivalence definitions and proofs of wandering point set and non-wandering point set,as well as the equivalence and its proof of several point set.
对拓扑动力系统中几个重要点集——游荡点集、非游荡点集和回归点集进行讨论,得到游荡点集和非游荡点集的几个等价定义,以及几个点集的等价性及其证明。
3)  nonwandering point
非游荡点
1.
It is proved that the set M_1 of all nonwandering points in the phase space X can be represented by [∪x∈Xω(x)] if the latter attracts each point of X.
证明了相空间X中全体非游荡点的集合M1可表示为[∪x∈Xω(x)],如果后者吸引X中的每一点。
2.
(2) Let T-O=∪n 0j=1I j, then for any j 0∈{1,2,…,n}, every connected component C of (T- P(f) )∩I j 0  has at most one nonwandering point with infinte orbit.
研究树 T上连续自映射的非游荡点集的性
3.
(2) Each isolated periodic point of f is an isolated nonwandering point of f.
给出了圆周S1上连续自映射f,P(f)≠的如下结果:(1)如果x∈W(f)-P(f),则x的轨道是无限集;(2)f的每个孤立的周期点都是f的孤立非游荡点;(3)f非游荡点集的每个聚点都是f的周期点集的二阶聚点;(4)f的ω极限点集的导集等于f周期点集的导集;f的非游荡点集的二阶导集,等于f的周期点集的二阶导集。
4)  f^g nonwan-dering point
f^g非游荡点
5)  nonwandering ['nɔn'wɔndəriŋ]
非游荡性
1.
By introducing the general notion of nonwandering operator semigroup T(t) and utilizing a basic result in normed linear space,the nonwandering property of T(t)=e~(tA) is investigated with the constructive method.
通过给出一般算子半群T(t)的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T(t)=etA在适当的条件下是非游荡的;另外,通过对C-半群T(t)概念的引进,定义了一个无界算子半群etA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群etP(B)关于非游荡性理论的刻画,其中P(B)是微分多项式。
6)  non-wandering set
非游荡集
1.
This paper investigates the pointwise pseudo-orbit tracing property on the non-wandering set.
讨论了非游荡集上的逐点伪轨跟踪性,证明了定义在紧度量空间上的连续满射若具有逐点伪轨跟踪性,那么它在非游荡集上的限制具有伪轨跟踪性。
2.
Here we study the topological structure of non-wandering set of self-continuous map on Y-space,we prove that for any x∈Yand x∈W(f)-P(f),then x∈Ω~(f).
本文研究Y-空间(Y={z∈C:z3∈[0,1]})上连续自映射的非游荡集的拓扑结构,证明了不在周期点闭包中ω-极限点都具有无限轨迹。
补充资料:游荡
1.闲游放荡。 2.犹游逛。 3.浮荡,动荡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条