1) nonwandering semigroup
非游荡半群
1.
In this paper we give the concept of the nonwandering semigroup, and show some concrete examples in the chaotic semigroup, so that we can broaden the study of hypercyclic operator.
Desch等人在超循环算子与半群的研究中提出了超循环半群的概念 ,并找到了一些微分方程的解半群具有这些性质 文献 [4 ]中 ,他给出了半群超循环以及混沌的充分条件 在他们的启发下 ,提出非游荡半群的概念 ,并在一些混沌半群中找到具体例子 ,以此拓广超循环算子的研
2) nonwandering operators and semigroups
非游荡算子(半群)
3) nonwandering operator semigroup
非游荡算子半群
4) nonwandering operator and semigroup
非游荡算子及其半群
5) non-wandering point
非游荡点
1.
It is proved that Poisson-stable points are dense in the locally compact phase space X if and only if non-wandering points are dense in the X.
证明了如果相空间X局部紧,则Poisson稳定点在X中稠与非游荡点在X中稠等价。
2.
This article discusses a few important point sets: wandering point set,non-wandering point set and recurrence point set in a topological dynamical system,obtains the equivalence definitions and proofs of wandering point set and non-wandering point set,as well as the equivalence and its proof of several point set.
对拓扑动力系统中几个重要点集——游荡点集、非游荡点集和回归点集进行讨论,得到游荡点集和非游荡点集的几个等价定义,以及几个点集的等价性及其证明。
6) nonwandering
['nɔn'wɔndəriŋ]
非游荡性
1.
By introducing the general notion of nonwandering operator semigroup T(t) and utilizing a basic result in normed linear space,the nonwandering property of T(t)=e~(tA) is investigated with the constructive method.
通过给出一般算子半群T(t)的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T(t)=etA在适当的条件下是非游荡的;另外,通过对C-半群T(t)概念的引进,定义了一个无界算子半群etA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群etP(B)关于非游荡性理论的刻画,其中P(B)是微分多项式。
补充资料:游荡
1.闲游放荡。 2.犹游逛。 3.浮荡,动荡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条