说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多延迟pantograph方程
1)  Multidelay-pantograph
多延迟pantograph方程
1.
Stability Analysis of One-leg Methods for Multidelay-pantograph Equation;
本文主要讨论了单支方法关于多延迟pantograph方程解的存在唯一性及渐近稳定性 ,同时将非线性多延迟系统数值解的有关结论推广到多延迟pantograph方程 ,证明了单支方法对于ODEs的A(α) 稳定等价于单支方法关于多延迟pantograph方程NGPk(α) 稳定 。
2)  RK methods
pantograph方程
3)  multidelay differential equations
多延迟微分方程
1.
This paper is concerned with the dissipativity of Runge-Kutta methods for multidelay differential equations.
研究了一类多延迟微分方程数值方法的散逸性问题。
4)  multi-delays differential equations
多延迟微分方程
1.
In this paper,we gave a sufficient condition of asymptotic stability for nonlinear multi-delays differential equations,and then,we discuss the case of many delays which depends on the base of the part work in the thesis Huang [1] and gain some same results.
给出非线性多延迟微分方程 (MDDEs)渐近稳定的一个充分条件 ,同时 ,将文 [1]的部分工作由单延迟推广到多延迟的情形 ,并获得了较好的理论结果 。
2.
In this paper,the asymptotic stability of the theoretical so lution and numerical solutions of nonlinear multi-delays differential equations (MDDEs) have been discussed.
讨论了一类非线性多延迟微分方程 (MDDEs)理论解的渐近稳定性和用单支方法求解该类非线性问题的数值解的弱渐近稳定性 。
5)  delay equation
延迟方程
1.
The reservoirs is abstracted as a semicircle model and on this basis to build a delay equation about the wave of water in the paper in which space radius and time are variables,and then get the formulas of water wave amplified in the various depths.
为减少水体的破坏性,需对库区水体的波动形式进行定量分析,为此本文建立关于空间半径和时间为变量的水体波动延迟方程,以及解释在波动过程中水体的延迟波动带来的压强差产生漩涡和跃波的产生机理,并确定产生跃波和最大漩涡的位置,从而为水库的安全设计提供参考依据。
6)  multi-pantograph equation
多比例延迟微分方程
1.
This paper is concerned with the stability of Rosenbrock methods with variable stepsize applied to multi-pantograph equation y′(t)=λy(t)+lk=1μ_ky(q_kt),λ,μ_k∈C,0<q_l<…<q_2<q_1<1.
主要讨论了用一类变步长Rosenbrock方法求解多比例延迟微分方程y′(t)=λy(t)+∑lk=1μky(qkt),λ,μk∈C,0
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条