1) strongly regular band
强正则带
1.
The relationship among general regular bands,strongly regular bands,perfectly regular bands and normal bands is also determined.
引入了强正则带和完备正则带的概念 ,用强加细半格和完备加细半格分别对它们的结构加以描述 ,并且讨论它们之间以及它们与一般正则带、正规带之间的关系 。
2) S-stroner locally left regular band
S-强局部左正则带
3) strongly regular ring
强正则环
1.
Several new characteristic properties of strongly regular rings are also given.
本文研究满足条件:每个单奇异右(或左)R-模是GP-内射的SF-环,并给出了强正则环的一些刻划。
2.
We characterize strongly regular rings via generalized weakly ideals.
通过单边理想是广义弱理想来刻画强正则环,证明了下列条件是等价的:①R是强正则环;②R是半素的左GP-V′-环,且每一个极大的左理想是广义弱理想;③R是半素的左GP-V′-环,且每一个极大的右理想是广义弱理想。
3.
The paper has researched module comparability theories about regular rings,including the module of regular rings and characterizations about modules over strongly regular rings.
主要对正则环的相关理论进行了研究,包括正则环理想上的模比较,并进一步研究了强正则环的模刻画。
4) strong regular graph
强正则图
1.
Let G be a strong regular graph(denoted by srg in short) with parameters(n,k,λ,μ).
设G是一个具有参数(n,k,λ,μ)的强正则图,首先讨论了图G的一些性质以及参数n,k,λ和μ之间的关系,特别地,提出了一个关于参数n,k,λ和μ的整性条件。
5) strongly regular graph
强正则图
1.
The number of walks and classification of adjacency matrix of strongly regular graph;
强正则图的途径计数和邻接矩阵分类
2.
f=f 1f 2f 3 and ( |f 1|,|f 2|,|f 3|)=(1,m,n) , then G is a strongly regular graph.
给出了一类是强正则图的点对称图,改进了文[1]的一个定理。
6) strongly regular rings
强正则环
1.
We also study the relationship among the Strongly regular rings,Strongly π-regular rings and Strongly Quasi-Clean rings.
本文定义强拟-C lean环,使用通常环论方法证明强拟-C lean环的同态象、直积、对角矩阵仍是强拟-C lean环,讨论强正则环、强π-正则环与强拟-C lean环之间的关系。
补充资料:得强则生
得强则生
得强则生 如虚弱转为强健有力,则虽病而预后良好。如头不能举、腰不能转、膝不能屈伸、肢不能久立等衰惫之症,渐转为有力,即谓“得强”。《素问·脉要精微论》:“五脏者,身之强也……得强则生,失强则死。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条