1) H Galois coextension
HGalois余扩张
1.
This paper gives a new method to prove the following three statements are equivalent: C/E is an H cleft coextension; C is isomorphic to a Hopf crossed coproduct E× α H with α convolution invertible; C/E is an H Galois coextension with a conormal basis property.
采用一种新方法证明了下述三者是等价的 :C/E是Hcleft余扩张 ;C同构于Hopf交叉余积E×αH且α卷积可逆 ;C/E是HGalois余扩张且具有余正规基性质 。
2) congruence extension
同余扩张
1.
The smallest congruence extensions of ideals in Fuzzy lattices;
Fuzzy格中理想的最小同余扩张
2.
In this paper, we discuss the subdirect reducibility of a class inverse semigroups by virtue of congruence extensions on inverse semigroups, and characterize the idempotent semilattices of this class inverse semigroups.
本文利用逆半群上的同余扩张,讨论了一类逆半群的亚直可约性,并刻划了这类逆半群的幂等元集的特征。
3.
It is very importent to study congruences and congruence extensions on semigroups.
本文讨论了带上的同余的正规性和不变性以及在其Hall半群上的扩张,从同余扩张的角度刻划了带上的同余的性质,给出了扩张的极大、极小同余的描述。
3) Galois coextension
Galois余扩张
1.
Let H be a finite dimensional Hopf algebra, C a right H -module coalgebra and R=C/CH + Suppose that C/R is an H -Galois coextension,and both R and R H * satisfy Krull-Schmidt property for injective comodules.
如果C/R是M Galois余扩张且R及R H 关于内射余模满足Krull schmidt性质 ,我们证明了C是交叉余积的主要条件是CR 为自由余模。
4) cleft coextension
cleft余扩张
1.
This paper gives a new method to prove the following three statements are equivalent: C/E is an H cleft coextension; C is isomorphic to a Hopf crossed coproduct E× α H with α convolution invertible; C/E is an H Galois coextension with a conormal basis property.
采用一种新方法证明了下述三者是等价的 :C/E是Hcleft余扩张 ;C同构于Hopf交叉余积E×αH且α卷积可逆 ;C/E是HGalois余扩张且具有余正规基性质 。
5) Coextension
[-'stenʃən]
余扩张
1.
Coextensions of Quasi-regular Biordered Sets by Rectangular Biordered Sets;
拟正则双序集用矩形双序集的余扩张
6) coalgebra Galois extension
余代数Galois扩张
1.
Entwining structure and the cohomology of coalgebra Galois extension;
Entwining结构和余代数Galois扩张的上同调
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条