说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 特征值子空间
1)  subspace of eigenvalue
特征值子空间
2)  characteristic subspace
特征子空间
1.
The characteristic subspace algorithm is used extensively in beam forming, DOA estimation and super-resolution processing because of its reducing dimension effect and robust processing capability.
特征子空间方法由于其降维效果和稳健性的处理能力已广泛应用于波束形成、DOA(波达方向)估计、超分辨处理中。
2.
The characteristic subspace is structured,then the face recognition is implemented in the characteristic subspace.
构造了特征子空间,并在特征子空间内实现脸部识别。
3.
In the paper,author shows that the characteristic subspace of σ is independent on selective methods of bases.
设σ是数域P上的n维向量空间V的线性变换,λ是σ的特征值,证明了σ的特征子空间Vλ与基的取法无关。
3)  eigenspace
特征子空间
1.
The decomposition of the eigenspace of the defective matrix and the general form of Jordan chain;
亏损矩阵特征子空间的分解与若当链一般形式
2.
The Eigenspace of Block Triangular Matrix;
分块三角矩阵的一类特征子空间
3.
The definition of eigenvalue and eigenspace of the quadratic matrix equation AX2+BX+C=0 is given in this paper.
给出了二次矩阵方程AX2+BX+C=0的特征值和特征子空间的定义,然后运用其特征子空间的维数或特征向量刻画了该二次矩阵方程存在可对角化解的充要条件。
4)  Eigen Subspace
特征子空间
1.
The eigen subspace based tracking method is adaptive to the change of object state and is robust to lighting varia-tion.
基于特征子空间的目标跟踪方法能适应目标状态的变化,并对光照等外部环境不敏感,但通常假定特征子空间的基向量固定,这样不仅需要离线训练,而且在目标姿态发生较大改变时,跟踪精度会降低。
5)  feature subspace
特征子空间
6)  eigensubspace
特征子空间
1.
Based on the eigensubspace estimation using discrete recurrent neural networks, we propose algorithms to solve the problem of eigensubspace estimation for positive definite symmetric matrix.
基于运用回复式离散神经网络进行特征子空间估值的理论,提出了解决正定对称矩阵的特征子空间估值问题的算法。
2.
This paper proposes two models of discrete recurrent neural networks to study the problem of eigensubspace estimation for positive definite symmetric matrix.
提出了用两种回复式离散神经网络模型研究正定对称矩阵的特征子空间估值问题:第1种模型是非线性神经网络,用于计算最大特征值及其特征向量;第2种模型属于线性神经网络,用于计算相应于最大特征值的特征子空间。
3.
At last,we get the eigensubspace of Un and UTn corresponding to the eigenvalue 1 and-1.
最后还分别得到了Un和UnT的对应特征值1和-1的特征子空间。
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条