1) complete chromatic number
完备色数
1.
In this paper, it has been proved that the complete chromatic number of maximum outerplanar graphs with △=6 is 7.
证明了最大度为6的极大外平面图的完备色数为7。
2.
In this paper, we provedthat if G is an open outerpanar graph with Δ(G)≥6 then Xc(G)= Δ(G)+1, whereXc(G) is the complete chromatic number of G and Δ(G)the maximum degree of verticesof G.
平面图G(V,E,F)的完备色数Xc(G)是使得集合V(G)∪E(G)∪F(G)中的相邻点,相邻边、相邻面、相关联的点边、相关联的点面及相关联的边面均染为不同颜色的最少颜色数,一个无割点的外平面称为开外平面图,如果它的每一个内面的边界至少含一条外边。
2) vertex-edge-face complete chromatic number
点边面完备色数
3) entire coloringi
完备着色
4) entire chromatic number
完备染色
1.
The entire chromatic number xvef (G) of a planar graph G is the minimal number of colors needed for coloring the vertices, edges and faces of G such that no two adjacent or incident elements receive the same color.
对平面图G的完备染色,是指对的G每个顶点、每条边和每个面均染上一种颜色,使得相邻的顶点、边和面染不同的颜色;完备色数X_(vef)(G)是对图G的进行完备染色的最小色数。
5) complete solutions
完备函数
6) Algebraic completion
代数完备
补充资料:色数儿
1.即色子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条