1) monolone sequence
严格单调序列
2) Strictly Monotone
严格单调
1.
Let f(x), g(x) be strictly monotone and integrable, p(x), q(x) be always positive and integrable over the same interval [a, b], according to mean value theorem for integrals, there is sole mean value ξ f,p (a,b) and ξ g,q (a,b) respectively.
设f (x)、g(x)在同一区间[a,b]内严格单调并可积,p(x)、q(x)恒正可积,按积分中值定理各有唯一的中间点ξf ,p(a,b)和ξg,q(a,b) 。
2.
In this paper, under the condition of strictly monotone, discusses str ictly monotone , continuity and derivatiability of integral mean value function, and the general results are obtained.
本文在严格单调的前提下 ,讨论了积分中值函数的严格单调性、连续性和可微性 ,得到了具有一般性的结论。
3.
This paper,under the condition of strictly monotone,discusses strictly monotone increasingproperty,continuity and differentiability of integral mean value function ξ(x),and weakens the condi-tion used in the document [1].
本文在严格单调的前提下,讨论了积分中值函数ξ(x)的严格递增性、连续性和可微性,减弱了文[1]所使用的条件。
4) strict monotonic increasing sequence
严格单调递增数列
5) strictly monotonic sequence
严格单凋列
6) strict monotonicity
严格单调性
1.
Necessary and sufficient conditions for uniform monotonicity,upper(lower) locally uniform monotonicity and strict monotonicity of Orlicz-Sobolev spaces with Orlicz norm are given.
改进了Hudzik,Kurc关于最佳逼近中的结果,给出了赋Orlicz范数的Orlicz- Sobolev空间具有一致单调性、局部一致单调性和严格单调性的充要条件、单调系数的数值,以及在最佳逼近中的应用。
2.
The present paper presents some comparison theorems on a class of quasilinear degenerate parabolic equations and by means of the results obtained in this paper a theorem on the strict monotonicity of generalized solutions is proved.
建立一类拟线性退缩抛物方程的比较原理 ,用其证明了广义解的某种严格单调
3.
We discuss strict monotonicity,local uniform monotonicity and uniform monotonicity of vector-valued Banach sequence spaces equipped with sequential norms and give their sufficient and necessary conditions.
刻画了赋序列范数的矢值Banach序列空间ss(E)的严格单调性、局部一致单调性和一致单调性,给出了它们的充要条件。
补充资料:单调序列
单调序列
monotone sequence
个.,,丁7,L月l朋.姗此,月U臼傲犯;MOHOTI)n.明noC加加股-咒月研oe几] 序列{x。},对于一切n二1,2,二,存在下列情况下: x。<气十,(严格递增序列); x。(戈。十:(非减序列): x。>气*,(严格递减序列); x。)x。、,(非增序列)·【补注】亦见递增序列(~吨s闪uenCe);递减序列(d。江启始ings闪uenCe).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条