说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 符号树控制数
1)  signed tree domination number
符号树控制数
1.
In this paper we introduce the concept of signed tree domination in graphs,we obtain a upper bound and a lower bound of signed tree domination numbers for general graphs G,and show that the two bounds are best possible.
引入了图的符号树控制的概念,给出一个连通图G的符号树控制数γ′T(G)的一个上界和一个下界,说明了这两个界限均是最好可能的,并确定几类特殊图的符号树控制数,这包括了圈、轮图、完全图和完全二部图。
2)  signed tree dominating function
符号树控制函数
3)  signed domination number
符号控制数
1.
The signed domination number of a graph G, denoted γ S(G), equals the minimum weight of a signed dominating function.
图G的符号控制函数f的权重f(V)=∑v∈Vf(v)的最小值定义为图G的符号控制数,记为γs(G)。
2.
The signed domination number of a graph G, denoted γS(G), equals the minimum weight of a signed dominating function of G.
图G的符号控制数等于G的一个符号控制函数的最小权重,记为γS(G)。
3.
To obtain efficient strict algorithms for determining the signed domination number in a graph which is NP-hard,some heuristic bounding strategies are proposed.
确定图的符号控制数是NP-难度的问题。
4)  the signed domination number
符号控制数
1.
In this paper, we study the signed domination number of graphs and obtain a lower bound for a k-partite graph.
研究图的符号控制数,得到了n阶k部图的符号控制数的一个下界,当δ=2时这个界是精确的,并且给出了δ=2时一个达到下界的图例。
5)  signed edge domination number
符号边控制数
1.
And further, The supper bounds of the minimum signed edge domination numbers B(n)for bipartite graphs of order n are given.
对于任意正整数m和n,构造了一类偶图(二部图)G(m,n),其阶为2mn,边数为3mn-m-n,确定了其符号边控制数为γ′s(G(m,n))=m+n-mn。
2.
In this paper the lower bounds of siged edge domination number of G are obtained, that is, γ, ( G) ≥ the signed edge domination numbers for several classes of graphs are determined.
设G为一个n阶连通图,△和δ分别为图G的最大度和最小度,给出了图G的符号边控制数的一个下界,即γ',并确定了几类特殊图的符号边控制数。
3.
Some super bounds for signed edge domination numbers of graphs are given, several corresponding problems and conjectures are presented.
本文给出了n阶图的符号边控制数的上界,并提出了相关的若干问题和猜想。
6)  reverse signed edge domination number
反符号边控制数
补充资料:符号逻辑(见数理逻辑)


符号逻辑(见数理逻辑)
symbotic logic

  tun叩Iuo”_符号逻辑(s,mb。牡clog玩)见数理逻择。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条