1) absolute moment
绝对矩
1.
The textbooks on probability theory,stipulate some classic strong laws of large numbers on the condition of sum from n=1 to∞(E|X_n|~p/a_n~p)<∞and require the order p of the absolute moment of random variable set between (0,2),but they cant give corresponding results in the case when the order p of the absolute moment is larger than 2.
绝对矩的阶数p在(0,2)之间,但对于绝对矩阶数p>2的情形,不能得到相应的结论。
2.
In this paper,four calculating formulas for the absolute moment of order 1 of the random variable are deduced,and that the function g(x)=E|ξ-x| achieves its minimum value at median m is proved,thus the related results in \ are expended.
推导了随机变量的一阶绝对矩的四个计算公式,证明了函数g(x)=E|ξ-x|在中位数m达到它的极小值,从而扩张了[1]中的有关结果;进而提出了能够用随机变量ξ关于它的中位数m的一阶绝对矩d(ξ;m)=△E|ξ-m|作为刻画ξ取值分散性的一个新的数字特征。
2) absolute central monment
绝对中心矩
1.
This paper discusses several properties of the absolute central monment of sums of independent random variable including the expression E|(X+Y)-E(X+Y)|-E|(X-Y)-E(X-Y)|,in which Xand Y are i.
本文讨论了独立随机变量之和的绝对中心矩的几个性质,其中包括E|(X+Y)-E(X+Y)|-E|(X-Y)-E(X-Y)|的表达式,这里X和Y是相对独立的随机变量。
3) absolute Y-th moment
绝对Y阶矩
4) isometric strength indicator
绝对峰力矩
5) absolute maximum moment
绝对最大弯矩
1.
By way of theory derivation, this paper defines the upper limit of the difference of absolute maximum moment of simple beam and the maximum moment in the section of span center, thus putting forward the valuable suggestion to design work.
通过理论推导,确定了简支梁绝对最大弯矩与跨中截面最大弯矩差值的上限,从而对实际设计工作提出了有益的建议。
2.
Through theoretical deduition is determined a big difference between the absolute maximum moment of a simply supported beam and the maximum moment of the middle span section.
通过理论推导,确定了简支梁绝对最大弯矩与跨中截面最大弯矩差值的上限,从而对实际设计工作提出有益的建
补充资料:绝对矩
绝对矩
absolute moment
绝对矩【.玩川u挽m曲ent泊反0几“叮.白MO袱盯],随机变量X的 }川r(r>0)的数学期望,通常记为且,所以 刀。=E}X}厂·数r称为绝对矩的阶(o rder)·如果F(x)是X的分布函数,则 +义 刀;一f}xl厂dF(x),(;)例如,如果X的分布具有密度p(x),则有 刀。=f 1 xl厂,(x)dx·(2) 式(l)和式(2)也分别称为分布函数F(x)和密度p(x)的绝对矩·对于数r’(O<;’毛r),由绝对矩氏的存在,可以推出绝对矩戏的存在以及;’阶矩(moment)的存在.在概率分布及其特征函数的估计中常常出现绝对矩(见勺的‘山.不等式(Cheb”hev inequaUty);瓜-叮..定理(LyaPunov theorem)).函数109尽是r的凸函数,函数衅r是r的非减函数,;>0.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条