1) topological treatment
拓扑学处理
1.
Based on the topological treatment of the granite thermodynamic system, we closely combined the geological environment, the granite emplacement, and the paragenetic associations of rocks, minerals and chemical elements of granitic rocks to form a "trinity" to be the main line of granite topo.
文中以花岗岩热力学体系的某一拓扑学处理为基础 ,把地质环境、花岗岩侵位和岩石、矿物、化学元素的共生组合相结合 ,形成“三位一体” ,建立起了花岗岩拓扑学的观点 ,用以说明一个地区的大地构造旋回各个阶段的花岗岩系的属性 ,并以此反映出大地构造中的某些基本问题。
3) topological psychology
拓扑心理学
1.
Superficially speaking,it seems that there is nothing common between topological psychology and cognitive linguistics.
表面上看,拓扑心理学与认知语言学没有什么关联,但笔者根据勒温(1936/1997)的《拓扑心理学原理》研读,发现拓扑心理学对认知语言学研究的体系和基本概念影响相当大(如概念整合、心理空间),这为我们更好地了解和研究这门新兴学科提供了一个坚实的基础。
2.
Centering on the concept of life space,topological psychology shows us many basic and important problems such as the space character of mind,the relation between person and environment,rule and case,psychology and physics.
拓扑心理学是勒温心理学体系中的重要部分。
4) dynamic topologic information processing
动态拓扑信息处理
1.
In this paper, the definition and classification of features on the base of industrial application are discussed, with which the methods of modeling based on features are studied, a new type of data structure supporting feature modeling is presented and an method—dynamic topologic information processing method for processing topologic information is studied.
本文结合工程实际,探讨了特征的定义及分类方法,提出了支持特征设计的新型数据结构并研究了基于特征的造型操作方法 ——动态拓扑信息处理方法及特征管理模式。
5) partial topology processing
局部拓扑关系处理
6) topological theory
拓扑理论
1.
Study on CRM Model and Algorithm Based on Customer Cluster and Topological Theory;
基于客户集群和拓扑理论的CRM模型与算法研究
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条